Norway has become the world capital of the electric car

Following the example of their crown prince, thousands of Norwegians have switched to electric cars, taking advantage of strong government incentives.

For the second month in a row, an electric car topped new car registrations in October in the Nordic country, where 716 Nissan Leaf were sold with an unprecedented market share of 5.6 percent.

“Norway is showing the way out of oil dependence, or even addiction,” said Snorre Sletvold, president of the Norwegian Electric Car Association.

From the modest Buddy, a locally produced two-seater urban car, to the more ostentatious US-made Tesla S, some 15,000 electric cars should be rolling on Norwegian roads by the end of 2013, 10 times more than in neighboring Denmark and Sweden.

Electric cars still represent a small fraction of Norway’s car pool, but figures grow steadily every month.

In total, they accounted for 7.2 percent of Norwegian auto sales in October, up from a 3.4 percent market share a year ago. Around 5,200 have been sold in the first 10 months of 2013 and new models by Volkswagen (including an electric version of its famous Golf), BMW and Renault are expected to hit the market in the coming months.

In September, US-made Tesla S, Crown Prince Haakon’s personal choice, topped the sales list due to a backlog that had built up before the first cars were shipped to the country.

Somewhat paradoxical in oil-rich Norway, this success can be partially explained by the numerous incentives intended to foster clean vehicle sales in the country.

Regardless of their price range, electric cars are exempt from VAT and other high Norwegian taxes, public parking fees and urban toll payments, and are allowed to use bus lanes.

Nissan to introduce e-NV200 commercial vehicle in Japan in 2014

Nissan Motor plans to launch e-NV200, a 100% electric commercial vehicle, in Japan in fiscal 2014. Production will begin the same year in Barcelona, Spain.

The e-NV200 model is based on the NV200 taxi vehicle, and is the second fully-electric vehicle from the manufacturer, after Nissan Leaf.

The vehicle has zero CO2 emissions during operation. Its features include an advanced telematics system, and power supply in the luggage area for outdoor activities or emergency power. Its powertrain, similar to that of Leaf, enables good acceleration and quiet operation, claims the company.

Nissan is in the process of creating a market for its new launch. The e-NV200's low operating cost is expected to make the vehicle attractive.

The company is in talks with Yokohama, Nissan's home city, to make the e-NV200 available for public services.

Nissan plans to make the latest electric vehicle part of "Yokohama Mobility Project Zero," a collaboration between the company and the city to achieve low carbon footprint. Nissan Leaf and ultra-compact electric vehicle Nissan New Mobility Concept are already included in the project.

The automaker is likely to introduce e-NV200 in Barcelona as well for public transport. It is preparing to install EV charger network and parking areas to support these vehicles in the city.

Electric car runs record-setting 1,300 km on one charge

A Japanese team set a world record Friday for distance traveled by an electric vehicle on a single battery charge, running 1,300 km on a course in Akita Prefecture.

The four-driver team included Kenjiro Shinozuka, 64, who in 1997 became the first Japanese driver to win the Dakar Rally.

The team said it plans to file a request with Guinness World Records for recognition of the feat, which eclipsed the previous mark of 1,003.2 km.

The drivers used an EV converted Suzuki Every minivehicle, equipped with a lithium-ion battery, to lap the 25-km-long course.

The four took turns at the wheel to drive the vehicle day and night at speeds of around 30 kph.

Audi Sport join Formula E Championship

ABT Sportsline, led by Team Principal Hans-Jürgen Abt, has today (15 November) reached an agreement that will see it become the seventh team and the only German outfit to enter the new FIA Formula E Championship – competing under the banner ‘Audi Sport ABT Formula E Team’.

“We’re proud to have the opportunity to take part in the debut of this new racing series. Participating in the new FIA Formula E Championship marks a completely new chapter in our more than 60-year motorsport history,” said Hans-Jürgen Abt. “As a company that has been active in the field of regenerative powertrains and electric mobility we’re convinced of the series’ concept. It’s innovative, delivers motorsport at the highest level and a great show for fans around the world – all of which are a perfect fit for ABT Sportsline.”

The outfit, from Germany’s Allgäu region, will race under the name of Audi Sport ABT Formula E Team, based on the name used in its successful commitment as an Audi factory team in the popular international touring car series DTM.

Head of Audi Motorsport Dr Wolfgang Ullrich commented: “We’ve been watching this new project of the FIA with great interest and are delighted that ABT Sportsline as one of our close and long-standing partners will be involved right from the beginning. We’re keeping our fingers crossed for the squad on tackling this new challenge and are planning to support its commitment with drivers from our factory line-up if required.”

The agreement was signed by Hans-Jürgen Abt and Alejandro Agag, CEO of Formula E Holdings, in Kempten, Germany. Audi Sport ABT Formula E Team will now be put forward to the FIA for final approval as the seventh outfit to enter the new global electric race series. They join IndyCar outfits Andretti Autosport and Dragon Racing, Asia’s China Racing and Super Aguri and fellow European squads Drayson Racing and e.dams.

With five titles to its credit in the DTM alone ABT Sportsline is one of the most successful German teams, which has achieved victories and titles in GT and endurance racing as well. The commitment in Formula racing now also marks a return to the outfit’s early days. At the beginning of the 1990s, ABT scored its initial successes in Formel ADAC and Formula Three. One of the drivers back then was the subsequent Formula One and DTM star Ralf Schumacher. “We’ve been keen to embrace new challenges on many occasions in the past. Formula E is no doubt one of the most intensive ones, which makes our excitement about it even greater,” added Hans-Jürgen Abt.

Alejandro Agag said: “We’re delighted to welcome the Audi Sport ABT Formula E Team into the championship, our seventh of 10 teams and the third European outfit. Formula E is very much an open championship and a platform for teams to showcase their own fully-electric cars, so to have one of the most successful German motorsport teams with the support of a big manufacturer on board is a fantastic addition to the series. I’m sure German racing fans will also be particularly pleased as they now have a home team to support during the Berlin Formula E race.”

Mitsubishi Motors cuts iMiEV price by up to $9,100 in Japan

Mitsubishi Motors Corp has slashed the price of its first generation electric kei-car the i-MiEV in Japan by up to $9,100.

Japan's sixth-biggest carmaker, which started selling the i-MiEV 4 years ago in 2009, said on Thursday it was dropping the price of its top of the range i-MiEV by around 25 percent, or 900,000 yen ($9,100), to 2.9 million yen

With government subsidies, the model can be bought in Japan for around 2 million yen, it said (AUD$ 21,500).

"The main purpose of cutting the price is to strengthen our ability to sell these cars," a Mitsubishi Motors spokesman said.

Mitsubishi Motors also cut the price of the entry level i-MiEV by 190,000 yen to 2.5 million, which with subsidies can be bought for about 1.7 million yen (AUD$ 18,250).

In just over four years since the vehicle first went on sale, Mitsubishi has manufactured some 30,000 i-MiEVs. The car was rebadged and sold by PSA Peugeot Citroen as the iOn and the C-Zero.

Mitsubishi is still betting on the electric powertrain technology and is aiming for electric vehicles and plug-in hybrids to account for 20 percent of the vehicles it produces by 2020.

Mitsubishi and Nissan Motor Co recently announced plans to expand a joint venture to develop a new small car including an electric version.

Nissan, maker of the Leaf electric car, also said on Thursday it would start selling its second all-electric vehicle, a commercial van called the e-NV200, in Japan in the financial year through March 2015.

MIT researchers find a way to boost lithium-air battery performance [VIDEO]

Lithium-air batteries have become a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges, including the need to develop better, more durable materials for the batteries’ electrodes and improving the number of charging-discharging cycles the batteries can withstand.

Now, MIT researchers have found that adding genetically modified viruses to the production of nanowires — wires that are about the width of a red blood cell, and which can serve as one of a battery’s electrodes — could help solve some of these problems.

The new work is described in a paper published in the journal Nature Communications, co-authored by graduate student Dahyun Oh, professors Angela Belcher and Yang Shao-Horn, and three others. The key to their work was to increase the surface area of the wire, thus increasing the area where electrochemical activity takes place during charging or discharging of the battery.

The researchers produced an array of nanowires, each about 80 nanometers across, using a genetically modified virus called M13, which can capture molecules of metals from water and bind them into structural shapes. In this case, wires of manganese oxide — a “favorite material” for a lithium-air battery’s cathode, Belcher says — were actually made by the viruses. But unlike wires “grown” through conventional chemical methods, these virus-built nanowires have a rough, spiky surface, which dramatically increases their surface area.

Belcher, the W.M. Keck Professor of Energy and a member of MIT’s Koch Institute for Integrative Cancer Research, explains that this process of biosynthesis is “really similar to how an abalone grows its shell” — in that case, by collecting calcium from seawater and depositing it into a solid, linked structure.

The increase in surface area produced by this method can provide “a big advantage,” Belcher says, in lithium-air batteries’ rate of charging and discharging. But the process also has other potential advantages, she says: Unlike conventional fabrication methods, which involve energy-intensive high temperatures and hazardous chemicals, this process can be carried out at room temperature using a water-based process.

Also, rather than isolated wires, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode.

A final part of the process is the addition of a small amount of a metal, such as palladium, which greatly increases the electrical conductivity of the nanowires and allows them to catalyze reactions that take place during charging and discharging. Other groups have tried to produce such batteries using pure or highly concentrated metals as the electrodes, but this new process drastically lowers how much of the expensive material is needed.

Altogether, these modifications have the potential to produce a battery that could provide two to three times greater energy density — the amount of energy that can be stored for a given weight — than today’s best lithium-ion batteries, a closely related technology that is today's top contender, the researchers say.

Belcher emphasizes that this is early-stage research, and much more work is needed to produce a lithium-air battery that’s viable for commercial production. This work only looked at the production of one component, the cathode; other essential parts, including the electrolyte — the ion conductor that lithium ions traverse from one of the battery’s electrodes to the other — require further research to find reliable, durable materials. Also, while this material was successfully tested through 50 cycles of charging and discharging, for practical use a battery must be capable of withstanding thousands of these cycles.

While these experiments used viruses for the molecular assembly, Belcher says that once the best materials for such batteries are found and tested, actual manufacturing might be done in a different way. This has happened with past materials developed in her lab, she says: The chemistry was initially developed using biological methods, but then alternative means that were more easily scalable for industrial-scale production were substituted in the actual manufacturing.

Jie Xiao, a research scientist at the Pacific Northwest National Laboratory who was not involved in this work, calls it “a great contribution to guide the research on how to effectively manipulate” catalysis in lithium-air batteries. She says this “novel approach … not only provides new insights for lithium-air batteries,” but also “the template introduced in this work is also readily adaptable for other catalytic systems.”

In addition to Oh, Belcher, and Shao-Horn, the work was carried out by MIT research scientists Jifa Qi and Yong Zhang and postdoc Yi-Chun Lu. The work was supported by the U.S. Army Research Office and the National Science Foundation.

Mitsubishi Electric to Exhibit EMIRAI 2 EV concept car @ Tokyo Motor Show [VIDEO]

Mitsubishi Electric will display its EMIRAI 2 concept car at this year’s Tokyo Motor Show. The car is a continuation of the original EMIRAI first exhibited in December 2011 with rear projection customizable dashboard display, biometrics capabilities, and sensor array.

Advanced automotive technologies and products will be displayed in two EMIRAI 2 electric-vehicle concept cars. One vehicle features an EV powertrain and the other a driving-assistance system to offer safer and more comfortable driving experiences in the coming future.

The EV powertrain system incorporates high-accuracy traction control and acceleration control. The driving-assistance system features integrated image sensing and powered on-board display technologies.

The show will be held at the Tokyo Big Sight exhibition complex in Tokyo, Japan from November 23 to December 1.

Graphene Supercapacitors Ready For Electric Vehicles

Automakers are always searching for ways to improve the efficiency, and therefore the range, of electric vehicles. One way to do this is to regenerate and reuse the energy that would normally be wasted when the brakes slow a vehicle down.

There is a problem doing this with conventional batteries, however. Braking occurs over timescales measured in seconds but that’s much too fast for batteries which generally take many hours to charge. So car makers have to find other ways to store this energy.

One of the more promising is to use supercapacitors because they can charge quickly and then discharge the energy just as fast.

Researchers at the Gwangju Institute of Science and Technology in Korea say they have developed a high-performance graphene supercapacitors that stores almost as much energy as a lithium-ion battery, can charge and discharge in seconds and maintain all this over many tens of thousands of charging cycles.

The Koreans say they have perfected a highly porous form of graphene that has a huge internal surface area. This is created by reducing graphene oxide particles with hydrazine in water agitated with ultrasound.

The graphene powder is then packed into a coin-shaped cell, and dried at 140 degrees C and at a pressure of 300/kg/cm for five hours.

The resulting graphene electrode is highly porous. A single gram has a surface area bigger than a basketball court. That’s important because it allows the electrode to accomodate much more electrolyte (an ionic liquid called EBIMF 1 M). And this ultimately determines the amount of charge the supercapacitor can hold.

Santhakumar Kannappan at the Gwangju Institute of Science and Technology have measured the performance of their supercapacitor at a specific capacitance of over 150 Farrads per gram that can store energy at a density of more than 64 Watt hours per kilogram at a current density of 5 Amps per gram.

That’s almost comparable with lithium-ion batteries which have an energy density of between 100 and 200 Watt hours per kilogram.

These supercapacitors have other advantages too. Kannappan and co say they can fully charge them in just 16 seconds and have repeated this some ten thousand times without a significant reduction in capacitance. “These values are the highest so far reported in the literature,” they say.