Audi e-tron quattro concept will be unveiled at IAA 2015 next month

The conceptual basis for a completely new all-electric Audi SUV with a potential range of more than 310 miles will be one of the stars of the IAA in Frankfurt next month. The Audi e-tron quattro concept profits from the expertise gained in the development of the forthcoming R8 e-tron, and the roadgoing model which it will help to spawn will be notable as the brand’s first large-series electric car when it enters production in 2018.

The Audi e-tron quattro concept is designed from the ground up as an electric car and proves to be pioneering in its segment at the very first glance. It follows the Audi “Aerosthetics” concept, combining technical measures for reducing aerodynamic drag with creative design solutions. Movable aerodynamic elements at the front, on the sides and at the rear improve the air flow around the car. The aerodynamically optimised underbody is completely closed. With a cd value of 0.25, the car sets a new record in the SUV segment. This contributes considerably to the long range of more than 500 kilometres (310 miles).

The study is based on the second-generation modular longitudinal platform, which provides considerable scope for the drive system and package. Its length is between that of the Audi Q5 and the Q7. Its typical SUV body and flat, coupé-like cabin give the Audi e-tron quattro concept a very dynamic appearance. The spacious interior offers room for four people.

The large lithium-ion battery is positioned between the axles and below the passenger compartment. This installation position provides for a low centre of gravity and a balanced axle load distribution, giving the car better driving dynamics and driving safety than other vehicles in the segment.

Audi uses its experience with the electrically driven Audi R8 e-tron sports car for the drive system. Three electric motors – one on the front axle and two on the rear – effectively create an ‘electrified quattro’, making the e-tron quattro concept both highly efficient and responsive.

Leaked: Audi’s Q6 e-tron Plug-In Hybrid

Images of Audi’s all-new Q6 have been leaked online months before its reveal at this September’s Frankfurt motor show.

The renderings, said to be official, first appeared late last night on German website Auto Motor und Sport and are thought to be final drawings of the concept, codenamed C-BEV, that will preview the zero-emission Q6 e-tron.

On sale some time in 2018, it’s already been confirmed by senior Audi board member Dr Ulrich Hackenberg, the Q6 will ride on the Q7’s MLB evo platform and that the objective for engineers was that it must cover 500km between charges.

Back then, Hackenberg said the Q6 must be “a technical light tower” and incorporate state-of-the-art technology.

According to reports from sources close to Audi the C-BEV will lift its motor and the 92kWh batteries from the latest R8 e-tron supercar, but instead of two rear-mounted motors, the Q6 will benefit from an additional third motor encased within its gearbox.

With the third motor the production Q6 e-tron will generate even more power, and the concept is expected to have a combined total of 375kW/700Nm. Factor in widespread use of lightweight composites like carbon-fibre and the new Tesla rival is expected to hit 100km/h in less than four seconds and top out at a limited 250km/h.

As well as a state-of-the-art powertrain the next-generation Q6 e-tron is expected to have a fully autonomous driving feature to allow occupants to enjoy the big Audi’s next-generation infotainment system.

Following the launch of the all-electric version, other more conventional variants powered by internal combustion engines will join the Q6 range. All engines will be borrowed from the Q7 range.

Audi is expected to reveal more of what will star on the 2018 Q6 e-tron production car at the Frankfurt show in September.

Graphene Supercapacitor equals Li-ion battery energy density

Scientists in South Korea have developed a graphene supercapacitor that stores as much energy per kilogram as a lithium-ion battery and can be recharged in under four minutes.

Supercapacitors are not a new idea. But graphene, which is a form of carbon composed of sheets a single atom thick, is especially suitable for making them.

Graphene has an area of 2,675 square metres per gram. All of this surface is available for the storage of static electricity. Graphene could therefore be used to make supercapacitors that hold more energy per kilogram than lithium-ion batteries.

Graphene is to graphite what a single playing card is to a full pack. Strong chemical bonds keep the graphene layers intact, but the individual layers are held to each other only weakly, which is why graphite can be used to make the “lead” in pencils. To make small amounts of graphene, you can peel the layers from the surface of a graphite crystal one at a time, as a dealer might when distributing cards (there are various ways of doing this). To make a lot of it, though, you have to pull the whole crystal apart, as one might scatter a pack across a table.

Dr Lu Wu of Gwangju Institute of Science and Technology, in South Korea, did this in two stages. First, he exposed powdered graphite to oxygen in a controlled manner to produce a substance called graphite oxide. This is not a true oxide, with a fixed chemical formula. Rather, it is a graphite-like substance that has oxygen-rich clusters of atoms between the graphene layers.

This done, he then heated the graphite oxide to 160°C in a vessel which had an internal pressure of a tenth of an atmosphere. The heat caused chemical reactions inside the graphite oxide, and these produced carbon dioxide and steam. The increased internal pressure these gases created, pushing against the reduced external pressure in the vessel, blew the graphite apart into its constituent sheets. Those, after a bit of further treatment to remove surplus oxygen, were then suitable for incorporation into a supercapacitor—which Dr Lu did.

The result, though small, worked well. It stored as much energy per kilogram as a lithium-ion battery and could be recharged in under four minutes. Scaled up to the size needed for a car, the current required to recharge it that quickly would require a pretty robust delivery system.

Wireless in-wheel motor system developed for electric vehicles

Japanese researchers have successfully developed the world’s first in-wheel motor system for electric vehicles that transmits power wirelessly to run motors incorporated in each wheel.

Hiroshi Fujimoto, an associate professor at the University of Tokyo specializing in electric vehicle control, and other researchers ran a vehicle equipped with the new system that transmits electricity wirelessly from an onboard power source to a coil attached to the wheel hubs.

“This technology will pave the way for the development of advanced electric vehicles, including those that receive electricity wirelessly from transmitting coils that are embedded under road surfaces,” Fujimoto said. “It can be also applied to fuel-cell vehicles and industrial machinery.”

The in-wheel motor, also known as wheel hub motor, is an electric motor that is incorporated into the hub of a vehicle's wheels to directly drive each wheel.

Compared with conventional electric vehicles, the in-wheel motor model does not require a drive shaft, a component that takes power from a single source and mechanically transfers it to all the wheels to drive them. Thus, a car using the system could be built lighter and require less energy.

Acceleration and braking for each wheel can also be controlled, which would help prevent mishaps such as skids.

Current cars using in-wheel motors need wires to transmit electricity. The complex wiring distribution and its susceptibility to shorting out have remained a hurdle in developing such a vehicle for practical use.

The research team’s wireless system transmits the electricity stored in the vehicle’s batteries through a transmitting coil to a receiving coil in the wheel hub, a distance of 10 centimeters.

The researchers successfully ran a motor using a maximum of 3 kilowatts of electricity and sent control information to each wheel using standardized Bluetooth wireless technology.

The rear-wheel-drive prototype car can, in theory, run at maximum 75 kph, the researchers said.

Volkswagen premiere the Golf GTE Sport: Plug-in hybrid sports car

VW presented the Golf GTE Sport in a world premiere at the legendary GTI event at Lake Wörthersee on 14 May 2015, Volkswagen is catapulting the GT tradition into the future. The high-tech Golf that is largely made of carbon is powered by a total of three motors – combined in a plug-in hybrid drive with system power of 295 kW / 400 PS. The concept car breaks down traditional barriers between road and motorsport vehicles. Its progressive hybrid system in combination with the high-tech all-wheel drive, a lightweight body, optimum aerodynamic downforce, precision running gear based on the design of the current Golf GTE, a new motor racing cockpit (including visualisation of the racing line) and an unusual seating concept (two monocoque-like interior areas) enable breathtaking performance on the racetrack. At the press of a button, however, the concept car is able to cover a distance of up to 50 kilometres on electric power alone and hence with zero emissions.

Drive system from motorsport and research

World Rally Car TSI engine. The 1.6 litre TSI (turbocharged direct-injection engine) adapted from the superb Polo R WRC (World Rally Car) is accommodated in the engine compartment at the front of the car. It delivers 220 kW / 299 PS and maximum torque of 400 Nm. Volkswagen has already won the World Rally Championship twice with this engine. In the Golf GTE Sport the four-cylinder masterpiece is assisted by two electric motors. The engineers positioned the first electric motor at the front (in the housing of the 6-speed dual-clutch gearbox). It develops 85 kW / 115 PS and maximum torque of 330 Nm. The second electric motor is located at the rear with the same power output but torque of 270 Nm. The total torque of the drive system is 670 Nm. Whenever possible, the concept car is powered solely by electricity without producing any emissions. In sporty "GTE mode" all three motors work together, giving the all-wheel-drive Golf GTE Sport a standstill to 100 km/h time of 4.3 seconds and a top speed of 280 km/h. In the NEDC cycle for plug-in hybrid vehicles the sports car consumes just 2.0 l/100 km/h.

Pure-bred sports car.

Balanced for the Nürburgring north loop. The concept of the Golf GTE Sport has been designed so that the car is at home in both normal road traffic and racetrack conditions. Accordingly, the drive, suspension, body and interior all follow the principle of a pure-bred sports car. The drive system offers maximum agility, the suspension displays maximum neutrality in interaction with the all-wheel drive, the carbon body is lightweight and with its balanced aerodynamics it virtually adheres to the road. The driver ergonomics bridge the gap to motor racing, and with optimum weight distribution and a low centre of gravity the overall package ensures that a lap around racetracks such as the north loop of the Nürburgring is a unique driving experience.

Interior rings in a new sports car era

Two-seater race car. The driver and passenger board the two-seater interior of the Golf GTE Sport through doors that swing right up in the style of the XL 1. The doors extend a long way up into the roof and down into the side sills, resulting in convenient boarding when they are opened upwards. The interior in carbon and microfibre consists of two completely separate areas for the driver and passenger. Like in motorsport vehicles, they sit quite a long way to the back on racing bucket seats with five-point belts. Accordingly, the steering column that is entirely clad in carbon projects a long way into the interior where it appears to float – a further characteristic feature of a rally car or touring-car racer. The functional elements are operated via controllers and buttons in the cocoon-like interior trim. The gearbox of the Golf GTE Sport can also be operated manually with shift paddles on the motorsport steering wheel.

Instruments on three levels. The instruments featuring a completely new design have been specially coordinated for the configuration of the driver's workspace. The Volkswagen interface designers opted for three transparent displays arranged behind one another on which all relevant information is displayed. On the smallest display at the front (closest to the driver) information such as the selected gear and the recuperation status is displayed; information that is only sporadically checked from the corner of the eye whilst driving. The centre display has secondary yet more complex information such as the power currently delivered by the drive (power meter) and the boost intensity of the plug-in system (electric boost). Information such as the current speed and the range are constantly in the driver's field of vision on the third and largest display. In addition, in "GTE mode" not only is the current lap displayed (e.g. 9 of 16), but there is also a virtual indicator of the ideal driving line – valuable assistance for safe and fast driving on complex racetracks such as the aforementioned Nürburgring north loop.

Ergonomic perfection. The clearly arranged multifunction switch for starting and stopping the hybrid drive and controlling the 6-speed DSG is ideally positioned to the right of the driver for easy access. Right next to it there is a control panel for further vehicle functions; these include a button for activating a fire extinguishing system similar to that used in motorsport. Furthermore, the passenger is also supplied with data via a display in his interior segment. In "Info Mode" the current speed, the gear currently engaged and the engine speed can be displayed. If the passenger switches to "Data Mode" he can call up the vehicle acceleration and lateral force figures (g- forces). It is not only the use of carbon, but rather a general lightweight design that saves weight in the interior. For example, the loops for opening the doors are made of the same synthetic fibre as the five-point belts. Moreover, extremely elaborate ergonomics prevail in every detail. The operating mode switch for selecting "E- Mode", "GTE-Mode" or "Hybrid-Mode", for example, is situated in the roof, like in a jet plane.

Body design and concept

Extremely lightweight. The body of the Golf GTE Sport is largely made of lightweight carbon. As both a brand and a group, Volkswagen is a trailblazer in the industrial use of this material. For example, like the exterior of the Bugatti Veyron 16.4, the body of the Volkswagen XL1 is also made of carbon. The high-strength carbon body of the Golf GTE Sport therefore weighs much less than a comparable steel body.

Side profile. The design concept of the Golf GTE Sport manifests itself in the car's striking silhouette. Here, Volkswagen is continuing the idea of C-pillars with a two-level design originating from the 2007 Golf GTI W12-650, which has been constantly further perfected in various concept cars. On the Golf GTE Sport that is now being presented, this C-pillar concept, which is unique worldwide, has reached a degree of perfection that allows it to leave the show car stage and – as a design vision – bridge the gap to the Golf GT models of the future. The basic styling of these pillars (like the string of a bow taut with an arrow) follows the unmistakable Golf design, but at the same time feature some completely new C-pillar details: behind the level visible from outside a second one opens up. The airstream flows between these two levels and is contributing to the aerodynamic downforce and to the cooling of the rear brake system. Stylistically, this concept means that the rear section (like the front section) is extremely wide. By contrast, the passenger cell between the A-pillar and the interior part of the C-pillar becomes narrower when viewed from the front to the rear – an avant-garde interplay of extremely powerful shapes.

Doors and sills fold upwards. As described, the concept car painted in pearlescent "White Club" has two gullwing doors that swing forwards. The upper part that extends a long way into the roof is entirely made of dark visible carbon. A large part of the side sill is integrated in the door cutout. The three-dimensional body of the sill is enhanced at the top in the door section with an area in dark visible carbon. Further features on the side profile in visible carbon are the door mirror caps, the door window frames and the lower sill area. This part of the sill is designed as a splitter, i.e. a thin and sharp aerodynamic element, a feature familiar in motorsport. The side sill is framed by the new 20-inch alloy wheels fitted with tyres in format 235 at the front and 275 at the rear.

Front. With the front section of the Golf GTE Sport the Volkswagen design team is impressively illustrating how the Golf GT models could develop in future. On the concept car, the designers removed the striking blue radiator grille line of the Golf GTE production model from the grille and positioned it below the bonnet as a blue crossbar running across the whole width of the front. Below it, three further crossbars in black chrome look extend across the centre air inlet. The high-gloss black air inlet grille itself has the honeycomb structure typical of GT models. A further air inlet below the crossbars is framed at the top and to the sides by a striking aerodynamic element (also made of carbon). A double spoiler, also designed as a splitter, rounds off the front. Here, too, carbon is used.

LED headlights and daytime running lights. All electric and plug- in hybrid models from Volkswagen have C-shaped LED daytime running lights as a distinctive feature, and the Golf GTE Sport is no exception. Here, they frame the whole radiator grille unit at the sides, and in the top area there is an almost seamless transition from the LED daytime running lights to the extremely narrow and sharp LED headlights.

Rear. Never before has Volkswagen realised such a charismatic and sporty rear for a Golf. Here, too, the two levels of the C-pillars are a defining stylistic feature giving the Golf GTE Sport a very wide and powerful appearance from the rear. The extended outer levels of the C-pillars at the rear – like the tail unit of an aeroplane – elongate the car together with the large roof spoiler. Typically Golf: the striking tailgate with a vertical downward angle at the level of the redesigned LED rear lights. At the top, the tailgate is limited by a black carbon roof spoiler – a wing that seems to hover in front of the tailgate at a distance of a few millimetres to the roof. The C-pillars that taper at an angle to the rear and the bumper merge into one another, with the latter projecting far above the line of the tailgate. As an imaginary continuation of the side strip made of visible carbon (above the sill), the top edge of the bumper also features visible carbon. Below this is an area painted in the body colour (with air outlets on the outside). The last level is a large diffuser made of visible carbon with the splitter that is also continued here. The round stainless steel trims of the twin-pipe exhaust system are integrated in the middle of the diffuser.

Drive – plug-in hybrid and electric propshaft

E-Mode – setting off on electric power. No Golf has ever had three motors before. But this one does. As described at the beginning, the combustion engine fitted by Volkswagen is a turbocharged 1.6-litre four-cylinder direct-injection engine (TSI) that produces 220 kW / 299 PS of power and a maximum torque of 400 Nm. The electric components consist of the lithium-ion battery and two electric motors. The front electric motor is integrated in the housing of the 6- speed DSG (DQ400E). Both electric motors have a power output of 85 kW. The total available system power is 295 kW / 400 PS. If necessary, the system drive power can be distributed to all four wheels thanks to the rear electric motor and an "electric propshaft". In normal operation the Golf GTE Sport drives just as quietly as the production Golf GTE that is already marketed. In "E-Mode" it is setting off purely electrically. In this case the concept car uses the battery that can be charged externally (but also whilst driving) to cruise without producing any emissions. It can cover up to 50 kilometres on a battery charge. When a defined minimum battery charge is reached, the 1.6 TSI is automatically switched on and the Golf GTE Sport drives in "Hybrid" mode. As soon as the battery reaches a certain charge level again, "E-Mode" can be reactivated at any time via a switch in the overhead console. In "E-Mode", the rear axle electric motor is first and foremost responsible for propulsion. When high demands are made on performance, the front electric motor is also activated to provide support.

Hybrid mode – silent coasting. As soon as the drive system or the driver deactivates "E-Mode", the Golf GTE Sport becomes a classic full hybrid with regenerative braking charging the battery and automatic utilisation of the right combination of TSI and/or electric motors according to the specific drive situation. When the driver releases the accelerator pedal, and the battery is sufficiently charged, all drive sources are shut off. This is referred to as "coasting". If the driver releases the accelerator pedal or brakes, and the battery is insufficiently charged, the two electric motors operate as generators and charge the lithium-ion battery with the energy recovered from braking. With the dual mode "Battery Hold" or "Battery Charge" the battery's energy content can be deliberately kept constant by the driver ("Hold") or increased ("Charge"). When the 1.6 TSI engine is the sole source of propulsion, the concept car is a pure front-wheel drive car.

GTE-Mode – the power of three hearts. The switch on board the Golf GTE Sport that is most important for dynamic performance is located in the overhead console. It bears the letters "GTE". When the driver operates this switch, the character of the Golf GTE Sport's drivetrain changes drastically in an instant because now the full system power of 400 PS is available. The turbocharged 299 PS petrol engine alone delivers immense propulsive power, and at this high level the electric drive components of the Golf GTE Sport assume an additional boost function. The boost effect is so strong that the drive unit would also perform well if used in professional touring car races: the Golf GTE Sport sprints to 50 km/h in 1.8 seconds, reaches 100 km/h in 4.3 seconds, and the maximum speed permitted in Austria, i.e. 130 km/h, in 6.5 seconds. On German motorways, the concept car reaches 200 km/h in 15.9 seconds. In "GTE-Mode" all four wheels of the Golf are driven.

All-wheel drive – "electric propshaft". In "GTE-Mode" and as soon as the situation necessitates it, the drive power of the Golf GTE Sport is distributed to both axles. In this case (and if battery charge is low), the front electric motor – which is now being supplied with kinetic energy via the TSI – acts solely as a generator and a source of electricity for its counterpart at the rear axle. Since the energy for driving the rear axle flows by wire and not mechanically here, this is referred to as an "electric propshaft". Because the TSI drives the rear electric motor via the front electric motor, the all-wheel drive system also operates when the battery's charge state is low – an invaluable advantage in terms of driving dynamics. The importance of the implementation of the "electric propshaft" for Volkswagen with regard to series production is demonstrated by the fact that the company has had the German equivalent of this designation protected under copyright law.

10x motor electric VTOL aircraft prototype takes off [VIDEO]

A team at NASA's Langley Research Center is developing a concept of a battery-powered plane that has 10 motors and can take off like a helicopter and fly efficiently like an aircraft.

The prototype, called Greased Lightning or GL-10, is currently in the design and testing phase. The initial thought was to develop a 20-foot wingspan (6.1 meters) aircraft powered by hybrid diesel/electric engines, but the team started with smaller versions for testing, built by rapid prototyping.

This research has helped lead to NASA Aeronautics Research Mission Directorate efforts to better understand the potential of electric propulsion across all types, sizes and missions for aviation.

More: PHYS.org

Infiniti’s Vision GT Hybrid concept [VIDEO]

Looking virtually identical to the digital model created for Gran Turismo 6, the real world Vision GT concept provides a glimpse at what a "high performance Infiniti could look like in the future.”

While the company didn't have much to say about the car, it has a naturally aspirated 4.5-litre V8 petrol-electric hybrid system powering the rear wheels and features an aggressive front fascia with a prominent grille that is flanked by slender headlights and sporty air intakes. Moving further back, there's sporty side skirts, carbon fiber trim and massive alloy wheels.

According to the game maker’s, the Infiniti Concept Vision Gran Turismo’s electric motor delivers “overwhelming torque” in low-speed situations while at higher speeds, the V8 engine teams “immense power”

Japan’s maglev train sets new world record with 603 km/h test run [VIDEO]

Japan’s state-of-the-art Maglev train set a world speed record Tuesday during a test run near Mount Fuji, clocking more than 600 km/h.

The seven-car Maglev — short for magnetic levitation — train, hit a top speed of 603 km/h (377 Mph), and managed nearly 11 seconds over 600 km/h Central Japan Railway (JR Tokai) said.

The new record came less than a week after the train clocked 590 km/h, by breaking its own 2003 record of 581 km/h.

The Maglev hovers 10 cm above the tracks and is propelled by electrically charged magnets.

JR Tokai wants to have a train in service in 2027 plying the route between Tokyo and Nagoya, a distance of 286 km.

The service, which will run at a top speed of 500 km/h, is expected to connect the two cities in only 40 minutes, less than half the time it takes by shinkansen.

By 2045 Maglev trains are expected to link Tokyo and Osaka in just 67 minutes, slashing the journey time in half.

However, construction costs for the dedicated lines are astronomical — estimated at nearly ¥11.9 trillion just for the stretch to Nagoya, with more than 80 percent of the route expected to go through costly tunnels.

Chevrolet-FNR autonomous EV concept

Chevrolet has created a vision of what it thinks a full autonomous all-electric vehicle of the future might look like.

Created by GM’s Pan Asia Technical Automotive Center the Chevrolet-FNR is an autonomous electric concept vehicle that boasts a futuristic capsule design. It has crystal laser headlights and taillights, dragonfly dual swing doors.

The Chevrolet-FNR features an extremely aero design focused on low drag powered by AWD magnetic hubless electric wheel motors along with autonomous wireless charging. A laundry list of imaginary specification like range and power output has been provided.

The Chevrolet-FNR is loaded with a range of sensors like roof-mounted radar that can map out the environment to enable driverless operation, Chevy Intelligent Assistant and iris recognition start. The Chevrolet-FNR can also serve as a “personal assistant” to map out the best route to the driver’s preferred destination.

In self-driving mode, the vehicle's front seats can swivel 180 degrees to face the rear seats, creating a more intimate setting. The driver can switch to manual mode through the gesture control feature.