Tasty Tech Eye Candy Of The Week (Feb 22)
Tesla, Apple Merger Deal ‘Unlikely’ Says Elon Musk [VIDEO]
Tesla CEO Elon Musk has confirmed that his company has met with Apple but added that it is "very unlikely" that Tesla would be bought by the company.
“We had conversations with Apple,” Musk said in an interview with BloombergTelevision. “I can’t comment on whether those revolved around any kind of acquisition.”
When asked if the electric automaker is for sale, Musk answered, “I think that’s very unlikely because we need to stay super focused on achieving a compelling – creating a compelling mass market electric car. And I’d be very concerned in any kind of acquisition scenario, whoever it is, that’d be become distracted from that task which has always been the driving goal of Tesla.”
Last week, the San Francisco Chronicle reported that Tesla met with Apple’s top deal maker Adrian Pernica leading to speculations of a possible Apple acquisition of the electric car company that has been going from strength to strength. The report also caused Tesla shares to soar as much as 11 percent to an all-time high of $215.21 on Thursday. The shares closed at $209.97, up 8.4 percent.
Yamaha Select Zytek Powertrain for MOTIV.e city car
New Zytek high-efficiency electric powertrain selected for Yamaha’s innovative MOTIV.e city car concept.
Yamaha’s new MOTIV.e city car concept, shown at the Tokyo motorshow, will be powered by an advanced electric drive from Zytek that employs a range of new design approaches to minimise the cost, weight and size of the system while maximising the performance and range. By supplying a number of core high voltage components as an optimised system, Zytek is also minimising the time required for vehicle development.
MOTIV.e comes from the partnership between Yamaha and Gordon Murray Design, using Murray’s revolutionary iStream® manufacturing technology to deliver a highly efficient yet fun-to-drive electric vehicle at an affordable price. Zytek’s sales and marketing director, Steve Tremble says that taking a fresh approach to the powertrain is central to achieving these goals.
“Yamaha wanted the vehicle to reflect the company’s reputation for outstanding engines,” he adds. “Interpreting this in an electric vehicle has driven excellence in performance and driveability, but also in weight reduction and efficiency to build on the potential of iStream to deliver an agile drivers’ car as well as maximising the range.”
Zytek supplies the electric motor, paired with a reduction gearbox from Vocis, and the electronic vehicle control module (EVCM) which provides the interface between the powertrain and the rest of the vehicle. The low cost power electronics is manufactured in high volumes by Zytek’s technical partner Continental. In keeping with the light weight and high efficiency targets for the MOTIV.e, the 25kW motor revs to 15,000rpm, much higher than comparable units, and drives through a single-speed reduction gearbox to give the required wheel speed. Increasing motor speed allows the electric engine to be smaller, lighter and more cost-effective than previous-generation units.
“The motor weighs just 13kg, the gearbox just 11kg,” explains Zytek’s engineering program manager, Neil Cheeseman. “These are components that you can pick up with one hand.”
Cheeseman believes the power electronics also set new standards for weight and packaging. The inverter, for example, weighs just 7.5kg “By making everything in house, Continental has eliminated many of the compromises that stem from using bought-in components,” he said. “Their substantial investment in power electronics has delivered a scalable, power-dense and cost-effective product range that is already proven on everything from small city cars to hybrid commercial vehicles.”
The Zytek EVCM is unique, being built on an electronics platform that duals as a development tool and a cost-effective production unit complying with all relevant automotive standards. Zytek says that unlike other dual-purpose systems that are suitable for production, their unit is cost-competitive with bespoke production technologies. It is also thought to be the only EVCM that takes a big further step in powertrain control integration by including thermal management within the decision-making algorithms.
“This is a new generation of EVCM that integrates torque arbitration, temperature control and voltage management to allow better decision making,” Cheeseman explains. “It optimises the driver’s torque request based on a broad range of parameters including battery charge and temperature and the grip available at the tyres to support control. By integrating these decisions, we can provide more with less to improve both the driving experience and the range while reducing the size, weight and cost of the power electronics and battery pack.”
Electric Nissan e-NV200 van on sale in May
The new e-NV200 is based on Nissan's existing NV200 van but, it features the electric drive system from the Leaf.
Nissan will initially offer the e-NV200 in van and five-seat people carrier variants. Using the Leaf's electric motor and battery pack will grant it around 107bhp and 207lb ft, and the range has previously been claimed to be equivalent to the Leaf's - around 80 miles in real-world conditions.
The e-NV200 is targeted primarily at businesses. Official pricing is yet to be confirmed but Nissan had said the initially higher price would be offset by a "reduction in operating costs", compared to a standard diesel van. Currently, the diesel NV200 is priced upwards of £13,585.
Kickstarter: An Unpretentious Guide to Electric Vehicles [VIDEO]
Here's a unique way to promote Electric Vehicles!
Los Angeles based Ayumi Kim works for a certain well-know California based electric vehicle manufacturer and initially got the idea to start this project as a way of sharing some of the left-field questions about electric vehicles she gets asked on a daily basis.
Ayumi, along with illustrator friend Sarah, have written a humorous FAQ that answers such real-world concerns as ""Can you plug a chainsaw into the cigarette lighter?" or "What happens if I hit a wombat with this car?"
Most of the booklet IS kid friendly, it being a coloring book and all, but there may be one or two questions that are PG.
The girls are looking to raise the modest sum of $3,500 to cover printing costs so if you're looking for a way to promote the cause and help them publish "educational materials to promote sustainability and green thinking" a pledge of US$15 will secure a copy.
Source: Kickstarter
Wheelies: The Big Brother Is Not Watching Edition
Explained: 2014 Formula One Brake-By-Wire Regeneration [VIDEO]
This year, the FIA Formula One World Championship is set for a wholesale change of the technical regulations that have doubled the power of the KERS system. because of the harvesting demands of the energy recovery systems, rear braking can be controlled electronically for the first time.
The braking system concept is totally new, taking the form of a brake-by-wire system for the first time at the rear wheels. This has become necessary due to the significantly increased performance of the ERS, which requires much greater variations in rear wheel braking torque than previously. With brake-by-wire, an electronic system measures how hard the driver presses the brake pedal and then – using the additional information from energy recuperation – determines in a split-second the amount of braking pressure that should be fed through to the rear brake callipers.”
Because the ERS (Energy Recovery System) is so much more powerful on these new cars compared to the KERS on the 2013 cars, harvesting energy when the car is braking – 161bhp of energy compared to 80bhp with the KERS – it is essential that the engineers install a system to compensate for the powerful effect that has on brake balance and braking stability. This makes it acceptable for the driver and doesn’t destabilise the car with a sudden balance shift. A lot of the lap time in modern F1 comes from stable braking.
How does it work?
An F1 car has two brake systems for safety – front and rear – so that if one fails the other will stop the car. For 2014, the rear brake system has the brake-by-wire, which assesses how much brake pressure the driver has called for when he presses the pedal and an electronic system modulates the power to the rear brakes, allowing for the ERS effect, that is taking energy to charge up the kinetic motor generator unit (known as MGU-K). It smooths out the process, slowing the car in a consistent way at the same time as ensuring the maximum energy harvest for the ERS.
Ideally, the driver would feel nothing unusual with this system, in that it should provide consistent, stable braking on demand. The job of the new rear brakes system is to ensure consistency. Some people might argue that the electronic assistance to the driver makes it a “driver aid” and in the sense that without it, it would be difficult to maintain a brake system that the drivers would be happy with. This damps it out. But as it’s written into the regulations it doesn’t fall foul of the regulation saying that the driver must drive “alone and unaided” – a rule that prevents the use of traction control, ABS and countless other technical goodies.
While FIA and pit lane boffins label everything with an acronym and make it sound overly technical, effectively formula One cars are adapting the 'brake pedal feel simulator' that most road car hybrid drivers, especially Chevy Volt owners, will be very familiar with, and from all reports it's taking the drivers some time to get used to it.
First Look: BMW X5 eDrive plug-in hybrid
At BMW’s Efficient Dynamics Innovation Days 2014 in Germany, the company provided the first opportunities for test-driving the BMW X5 eDrive plug-in hybrid (PHEV) prototype. BMW also presented the first four-cylinder member of its new EfficientDyanamics engine family—the 2.0-liter unit would serve as the engine component in a future production X5 eDrive PHEV—as well as ideas for future solutions in the field of lightweight design, aerodynamics and thermal management.
Powertrain technology is key to BMW’s EfficientDynamics strategy, with a dual focus on the continuous evolution of conventional internal combustion engines on the one hand and the development of alternative drive concepts on the other. As well as achieving significant emissions reductions based on continuous evolutionary advances of the TwinPower Turbo gasoline and diesel engines, future BMW core brand models will also benefit from the transfer of new electrified drive technology (BMW eDrive) developed by the BMW i sub-brand.
All BMW eDrive components are developed in-house by the BMW Group and customized as necessary to suit different powertrain applications. Current examples are the all-electric BMW i3 and the plug-in hybrid BMW i8. The BMW i8 is at the leading edge of the Efficient Dynamics strategy; the technology used in the i8 powertrain will find its way into vehicles of the BMW core brand.
The i8 powertrain.
The plug-in hybrid powertrain of the production BMW i8 unveiled at the 2013 Frankfurt Motor Show (earlier post) combines electric drive with a highly turbocharged internal combustion engine. With its combined maximum output of 266 kW/362 hp, combined peak torque of 570 nm (420 lb-ft), 0 – 100 km/h (62 mph) acceleration in 4.4 seconds, EU fuel consumption of 2.1 l/100 km (112 mpg US) and CO2 emissions of 49 g/km, this plug-in hybrid sports car shows that it is possible to improve performance and reduce fuel consumption at one and the same time.
The electric motor provides a boost effect that assists the gasoline engine when extra accelerating power is required. It can also act as the sole source of driving power, providing a maximum speed of 120 km/h (approx. 75 mph) and a range of up to 35 kilometres (approx. 22 miles). Its power is supplied by the lithium-ion high-voltage battery pack.
During overrun, the high-voltage battery can be recharged via the electric motor. It can also be recharged by the electric motor when power demands allow. The high-voltage starter-generator, responsible for starting the engine, can also be used as a generator to charge the battery.
Plug-in hybrids are efficient whether used for short-distance or for long-distance driving, or a mixture of the two. Intelligent powertrain management ensures that both power sources always work together optimally. Power sharing between the internal combustion engine and the electric motor is managed in accordance with load and driving situation.
Driver preferences are also taken into account, with a bias either towards sporty, dynamic performance characteristics or towards extra-energy-efficient operation of the overall system. To set these characteristics, the driver can choose from a range of pre-selectable driving modes, offering very dynamic, more comfortable or highly efficient operation.
Powertrain electrification has enormous potential for reducing fuel consumption and emissions—even for large, heavy vehicles—without compromising performance and dynamism. Quite the reverse, in fact, BMW noted: the boost function of the electric motor, the additional drive torque of which supplements the internal combustion engine during low- and mid-range acceleration, significantly enhances the sporty driving experience.
As a further step in the Efficient Dynamics strategy, there are plans in the medium-term to transfer the advanced powertrain technology of the BMW i8 to vehicles of the BMW core brand as well.
The X5 plug-in hybrid.
The BMW Concept X5 eDrive model presented in September 2013 at the IAA in Frankfurt showed a way in which Sports Activity Vehicles can be made more efficient. The SAV concept model combines the BMW xDrive intelligent all-wheel-drive system with a new BMW plug-in hybrid system.
Supported by the boost function of the electric motor, the SAV can deliver powerful acceleration and a 0 – 100 km/h (62 mph) acceleration time of less than seven seconds. The development goal for this model is average fuel consumption of approximately 3.8 liters per 100 kilometers (62 mpg US) in the EU test cycle, and CO2 emissions of 90 grams per kilometer—new benchmarks in this vehicle category. The vehicle is also capable of all-electric operation for up to 30 kilometers (more than 18 miles), in which mode its produces no emissions at all at the point of use.
With synchronization of the BMW eDrive technology with the intelligent BMW xDrive all-wheel-drive system, the drive torque from the electric motor, the four-cylinder gasoline engine or both power sources operating in tandem can be split in a variable ratio between the front and rear wheels. The split is automatically controlled to provide superior traction, optimal stability and highest standards of agility and performance under all conditions.
Whereas the BMW i8 is fitted with the BMW Group’s highly turbocharged three-cylinder engine, the future BMW X5 eDrive will use an advanced four-cylinder gasoline engine from the same family—the new Efficient Dynamics engine range with TwinPower Turbo technology. BMW said that this demonstrates its overall aim of providing a customized electric mobility solution in every model series.
Four-cylinder TwinPower Turbo.
The new Efficient Dynamics engine family comprises three-, four- and six-cylinder units. By increasing the aluminium content and using magnesium, the BMW Group has also achieved substantial reductions in the average weight of the new engines. At the same time thermal management and acoustic properties have also been improved.
The first member of this new engine family is the 1.5-liter three-cylinder gasoline engine making its debut in the BMW i8. BMW is now presenting the first four-cylinder engines in this new engine family. These 2.0-liter engines with TwinPower Turbo technology will enter the market in the first half of 2014, in both gasoline and diesel versions.
“TwinPower” stands for a combination of variable load control with advanced injection technology. TwinPower incorporates fully variable components such as VANOS or Double-VANOS seamlessly variable camshaft timing; VALVETRONIC variable valve control; and/or VNT (variable nozzle turbine) turbochargers on the diesel models. These are complemented by High Precision Direct Injection on the gasoline models, with common-rail direct injection on the diesels, and finally by the third element in this high-tech concept—turbocharging.
A feature of the gasoline models continues to be VALVETRONIC throttle-free load control.
Common to all units in the new engine family is an in-line configuration. The core engine comprises cylinders with an individual displacement of 500 cc. This means the new three-cylinder engine has a displacement of 1.5 liters, the four-cylinder engine 2.0 litres and the six-cylinder unit 3.0 litres. Thanks to construction commonality within a combustion type, the proportion of shared components has increased to as much as 60%, while design commonality between gasoline and diesel engines is approximately 40%. Finally, all the engines run cold on the intake side and hot on the exhaust side. This is one reason why the three- and four-cylinder engines from the new family can be mounted either longitudinally or transversely in future BMW and MINI models.
With the new modular engine family, the BMW Group is able to develop three-, four- and six-cylinder engines with different power ratings that are suited to different vehicle concepts. This makes it possible to achieve higher production volumes, leading to significant savings on development and production costs. At the same time the high level of design commonality between the engines makes it easier to develop additional versions and makes it possible to build relatively small volumes of such engines at short notice and cost-efficiently.
As a result it is now possible for the first time at the BMW Group’s engine plants to build both gasoline and diesel engines from the new family at the same time, on the same production line. That allows for flexible responses to variations in demand or in market trends.
Proactive drive system.
BMW’s proactive drive system—which is also applied in the X5 PHEV concept—is based on the principle that energy should not be used unless it is actually needed. The vehicle should anticipate driving situations in advance, so that it can automatically prepare for upcoming requirements. The necessary information is supplied by the vehicle electronic system’s numerous sensors, the navigation system and, most recently, front-mounted radar and camera sensors.
More models from all BMW Group model ranges are already adopting this type of vehicle energy management, with navigation-based information allowing the transmission management and the Proactive Driving Assistant to identify the upcoming route and route profile, i.e. features such as uphill and downhill gradients and speed limits. This ability to “see ahead” allows the transmission to automatically select the correct gear in good time to suit the driving situation.
Depending on individual driving style, ECO PRO mode can achieve a reduction of up to 20% in fuel consumption. A further 5% saving can be achieved by using the coasting function, Proactive Driving Assistant and ECO PRO Route. The Proactive Driving Assistant works in tandem with the navigation system to identify route features in good time. It takes into account speed limits, corners, the start of built-up areas, roundabouts, turn-offs and motorway exits. And based on the recorded driving data, the system also offers tips on a fuel-saving driving style.
In COMFORT and SPORT modes, the proactive drive system adapts the automatic transmission’s shift program to the driving situation. Whereas a conventional shift strategy is “blind” and only operates reactively, in response to throttle position and driving resistances, the Proactive Driving Assistant makes it possible to “anticipate” the route ahead and to adapt gear changes appropriately in real time.
The coasting function (on models with automatic transmission) disconnects the engine from the powertrain at speeds between 50 and 160 km/h (approx. 30 and 100 mph), allowing the vehicle to coast using only kinetic energy.
When ECO PRO mode is activated, the BMW navigation system shows the driver not only the fastest and shortest routes to a given destination but also the most efficient. Taking into account the current driving situation and route profile, the system calculates which route will offer maximum fuel savings with minimum loss of time. The driver can then decide whether to save time or fuel. The savings achievable on a particular route are shown as a percentage. In the event of congestion or other hold-ups on the selected route, the system will propose alternative routes. The route calculations also take into account, on a continuous, real-time basis, the driver’s individual driving style, based on vehicle fuel consumption in different driving situations.
The ECO PRO Analyser, which is a standard component of ECO PRO mode, allows drivers to analyze their driving styles at any time and to identify further potential for reducing fuel consumption. Before, during and after the trip, the driver can call up statistics in the ECO PRO Analyser to check efficiency of accelerating, decelerating and changing gear, and to see what sort of positive impact an improved driving style could have on fuel consumption and therefore also on range. The ECO PRO driving tips are intended to aid more fuel-efficient driving.
Using BMW ConnectedDrive Services and the free-of-charge BMW Connected App, the recorded data can also be transferred to a compatible smartphone. A rating scale indicates the fuel efficiency of the driving style.
With onboard radar and camera sensors, the third generation of the Proactive Driving Assistant is also able to incorporate the vehicle’s immediate driving environment into its operating strategy. This information allows the automatic transmission to adapt its shift strategy even more precisely to the current driving situation for greater efficiency. For example, the system can identify slower-moving vehicles in the lane ahead, as well as vehicles in neighboring lanes. Strategically timed gear changes can then be performed which provide sufficient deceleration, even without braking, to prevent collisions with vehicles in front. At the same time, gear changes can provide the necessary power reserves for overtaking and dynamic lane changes.
The proactive drive system also improves the dynamic characteristics of the vehicle, whether in ECO PRO mode, which is geared to maximum efficiency, in SPORT mode, where the automatic transmission uses a performance-biased shift strategy, or in COMFORT mode, which adopts a more relaxed, easygoing strategy.
If the vehicle is approaching a curve, the transmission automatically changes down to the most appropriate gear, if necessary making use of engine braking effect. All the necessary shift operations will have been completed by the time the vehicle enters the corner. If the system detects that another bend is coming up very soon, it identifies the radius of the corner and again selects the optimal gear. This ensures that higher engine braking power is available on approach.
The power reserves available for subsequent acceleration are also increased, while unnecessary gearshifts and hunting between gears on or between bends is avoided.
The proactive drive system works in a similar way at roundabouts, intersections, turn-offs and at slip roads on or off motorways. Regardless of the route specified in the navigation system, the proactive drive system also reacts to the use of the direction indicator.
Volkswagen Unveils Golf GTE Plug-In Hybrid
Volkswagen is the first automaker worldwide to offer a model line with a full range of conventional and alternative powertrains. The new Golf GTE plug-in hybrid, which will be presented at the Geneva International Motor Show (March 4 to 16, 2014) is the fifth powertrain to be offered in the Golf, adding to gasoline, diesel, CNG and full electric versions. The Golf GTE has an NEDC hybrid combined fuel economy rating of 157 mpg (equivalent to 35 g of CO2) and has an all-electric range of 31 miles along with an overall range of 584 miles.
GTI, GTD, GTE. The Golf GTE name is in line with the GTI and GTD abbreviations-two sporty icons of the Golf range. The first GTI in 1976 invented the term "hot hatch" and is currently the most successful compact sports car in the world. The "I" in the name stands for electronic fuel injection while the "D" in GTD, introduced for the first time in 1982, stands for diesel fuel injection. The latest versions of these two best-selling Golf sports cars were introduced in 2013. Now Volkswagen has transferred its sporty compact car philosophy to a third model-the Golf GTE.
The new Golf GTE has two engines: a1.4-liter148 horsepower turbocharged and direct-injection TSI® engine and a 101 hp electric motor. These combine to provide the stated system power of 201 hp. If the electric motor is the sole source for propulsive power, the Golf GTE is capable of speeds of up to 81 mph. When the full power of the system is harnessed, the GTE sprints from 0 to 62 mph in 7.6 seconds and achieves a top speed of 135 mph on the autobahn and race courses. Of more significance is the superior pulling power of the Golf GTE thanks to its alliance of a gasoline engine and electric motor that produces a maximum torque of 258 lb-ft. This torque sets this first "GTE" apart from other plug-in hybrid models.
Despite its power and torque, the Golf GTE remains one of the world's most efficient cars. If you mainly run short distances, you can drive in emissions-free all-electric mode for days, weeks, and months. The battery takes about three and a half hours to charge fully from a conventional wall outlet.
If the battery is charged using a wallbox or a public charging station, the charging time is shortened to approximately two and a half hours. Thanks to the control options on the Golf GTE, the driver can also ensure on longer trips that only the electric motor is used in an urban area.
The automobile revolution has a name – MQB. The variety of products in the Golf lineup- TSI (including GTI), TDI® (including GTD), TGI (powered by CNG), e-Golf, and Golf GTE-is made possible by the modular transverse matrix, abbreviated to MQB. This modular technology platform, initially introduced with the current Golf in 2012, is synonymous with an automotive revolution because Volkswagen engineers have created the prerequisites for a high-volume model, such as the Golf, to accept all drive types. This explains why Golf models with gasoline, diesel, natural gas, electric and hybrid drives can be manufactured from bumper to bumper at Volkswagen factories. As soon as developments make it possible, the first Golf with a hydrogen fuel cell will become part of the range.
Golf GTE plug-in hybrid system
As mentioned, the new Golf GTE is driven by a 148-hp TSI turbocharged and direct-injection gasoline engine and a 101-hp electric motor. The electric motor is supplied with power from a high-voltage 8.8 kWh liquid-cooled lithium-ion battery that is charged from a socket behind the VW logo in the radiator grille. The battery weighs 265 pounds, or about eight percent of the GTE's 3360-pound curb weight. The GTE has a six-speed DSG® automatic transmission that was developed specifically for hybrid vehicles.
Volkswagen integrated the electric motor in the transmission housing. Additional hybrid drive components also include the power electronics (which converts the battery's direct current to alternating current for the electric motor) and a charger. An electro-mechanical brake servo and an electric air-conditioning compressor safeguard optimal and energy-efficient operation of the brakes and air conditioning, especially for the GTE's "e-mode".
The Golf GTE can be driven in various intuitively named modes. For instance, the driver can push a button to intentionally switch to the "e-mode" which makes the Golf GTE a zero-emissions vehicle. The driver can also use the button to switch to "GTE mode", which activates the sporty side of this new Golf.
Design and features
The Golf GTE contains a pioneering, environmentally friendly, and sporty plug-in hybrid system. All of this is combined with a suspension that offers equally sporty handling and high levels of comfort.
Exterior. Volkswagen Head Designer Klaus Bischoff's crew created a look that merges GTI insignia with those of the e-Golf, creating an unmistakable identity. Klaus Bischoff explains the differences: "The presence of the electric drive is visually expressed by the prominent C-signature of the daytime running lights on the Golf GTE. Meanwhile, all other front design elements bridge to the GTI."
In those places where red dominates on the GTI, blue is used in the GTE. Bischoff continues: "A radiator crossbar running into the headlights provides further sporty accents within the context of Volkswagen electric mobility." Like the e-Golf, the four-door Golf GTE will launch with LED dual headlights as standard. The turn signals, parking light, and smoked numberplate lighting also use LED technology. Side skirts and a roof-edge spoiler provide further parallels with the GTI and GTD. Meanwhile, the aerodynamic 16-inch (standard), 17-inch, and 18-inch aluminum-alloy wheels were designed especially for the GTE.
Interior. Like the exterior, the sporty interior of the Golf GTE reveals a clear relationship to its other two GT series counterparts. However, just as on the exterior, the interior's red accents have also turned to blue. Klaus Bischoff says: "Volkswagen's e-mobility color of blue creates attractive contrasts in the car's seating, decorative seams, and material design. Moreover, the blue ambience lighting builds a visual bridge to the world of e-mobility." The light blue decorative seams on the leather-wrapped steering wheel, on the edges of the floormats, on the seats, and on the shifter grip are perfectly matched with the exterior features of the Golf GTE.
Golf GTE-specific instruments and displays
Touchscreen. All Golf cars are equipped with a touchscreen. In the case of the Golf GTE the high-resolution 6.5-inch "Composition Media" radio system is standard. The "Discover Pro" radio-navigation system is available as an option. Both units are equipped with many additional functions on the GTE. These include a "driving range monitor", an "energy flow display", "zero emission statistics", "e-manager", and-with the optional navigation system-the "360° driving range". Additionally, all Golf GTE owners can download the "Volkswagen Car-Net e-Remote" app to their smartphone free-of-charge and use it to control functions and access information.
Driving range monitor: shows the current electric driving range of the GTE as well as the additional driving range potential from deactivating any auxiliary features that consume electricity.
Energy flow display: shows the power flow when accelerating (blue arrows) and when braking or regenerating (green arrows) as animated graphics.
e-manager: can program up to three departure and charging times; the Golf GTE ensures the set temperature and battery charge status at a defined time. Parallel to this, heating or cooling of the interior can be activated using standard air-conditioning while charging. Air conditioning therefore does not hinder the battery charging process, thereby extending the electric range.
360° range: the current radius in "e-mode" is shown by the 360° range in the local map. The inner area shows the range for an outward and return trip, the outer area the range for a one-way drive. Charging stations can be displayed and incorporated in the route as intermediate stopovers.
Car-Net e-Remote. Using the "Volkswagen Car-Net e-Remote" app it is also possible to make several of these settings and requests for information via a smartphone or the Car-Net website. In detail, the app can program the departure time, air conditioning, charging the battery, accessing vehicle data, and the vehicle's status.
Power meter. The power meter supplements the tachometer on the left-hand side of the instrument cluster; it displays how much system power is currently being used or the intensity of battery regeneration. The speedometer remains on the right-hand side. The color display which is located between the power meter and the speedometer (multifunction display "Plus") also permanently shows the electrical driving range and the current operating mode.