BMW says has 10,000 i3 orders – i8 already sold out

BMW has orders for nearly 10,000 of its i3 electric cars, the first of which were delivered in Germany last week, the company's global sales chief, Ian Robertson, said at the Los Angeles Auto Show.

Robertson also said the BMW i8 plug-in hybrid sports car due to be introduced in mid-2014 has sold out for its first year of availability. He did not say how many the company will sell in that first year.

The BMW i3 will go on sale in the U.S. market in the second quarter of 2014.

e-volo VC200 18 rotor 2 person electric helicopter – first flight [VIDEO]

E-volo’s Volocopter is a revolution in aviation Made in Germany. Safer, simpler, and cleaner than normal helicopters, it has a unique way of moving – a groundbreaking innovation. The Volocopter is an environmentally friendly and emission-free private helicopter. Instead of one combustion engine, eighteen electrically driven rotors propel it.

The maiden flight and first test flights were conducted in the dm-arena in Karlsruhe with the prototype of the 2-person VC200 on Sunday, November 17, 2013. Based on this model, it will be prepared for series production in the coming years. “There are already numerous requests for the Volocopter from around the world,“ said Alexander Zosel, managing director of e-volo.

With multiple flights lasting several minutes reaching the nearly 22 m high ceiling of the dm-arena, including a number of smooth takeoffs and landings, the Volocopter concept exceeded all expectations. “Rich and incredibly quiet sound, absolutely no noticeable vibrations in the flight, convincing structure with a great, new spring strut landing gear, and an extremely calm rotor plane,“ concluded the e-volo managing director, thanking the KMK. “New innovations that have the possibility to change our world are continually presented at the Messe Karlsruhe. Therefore it was natural to work in partnership with the e-volo team to enable the test flights in the dm-arena,“ announced KMK managing director Britta Wirtz. “The fair is not just a display of strengths in the technology field, but concretely supports pioneers of aviation as well.“

The developing team of e-volo knew from the onset that the Volocopter was very easy to fly. Due to elaborate simulations at the Stuttgart University, they already knew that it was much more quiet than a helicopter. However, the pleasant low, rich sound and the lower-than-expected noise level caused great cheering among the e-volo team during the first flights.

People were eager to know whether there would be disturbing or even dangerous vibrations in the mechanic structure of the rotor plane. “Such vibrations are a large problem for normal helicopters,“ stated e-volo managing director Stephan Wolf, adding that “there, the vibrations together with the deafening noise have lead to much discomfort on passenger flights in helicopters.“ Due to the complex structure of the Volocopter in carbon lightweight design, it was not possible to simulate the expected vibrations in the laboratory. “The result of the first flight created a euphoria among the entire project team.“ Wolf and Zosel further stated that “not even the HD video cameras secured to the exterior carbon ring of the rotor plane captured the least vibrations.“

Nearly all problems of normal helicopters are thereby solved.

Yamaha Unveil Motive.e City Car @ Tokyo [VIDEO]

In the current era of urban traffic and environmental problems there is increasing demand for downsizing and fuel efficient cars. MOTIV.e satisfies these demands by utilising ground breaking manufacturing and materials technology while delivering a new level of driver experience which emanates from the Yamaha Motor Company DNA.

The MOTIV.e is created from Yamaha Motor's multi-wheel history and experience (2 wheel - 3 wheel and 4 wheel technology). Yamaha Motor Company has always been dedicated to craftsmanship with a focus on 'quality mobility'. The MOTIV.e builds on this philosophy and incorporates Formula One heritage, inspiration from motorcycle design and the latest technology to deliver an exciting and high quality driving experience. The MOTIV.e delivers a new level of personal mobility.

Yamaha Motor Company chose Gordon Murray Design to cooperate in the design and development of the MOTIV.e which utilises Gordon Murray Design's revolutionary iStream® manufacturing technology. Yamaha Motor Company and Gordon Murray Design are a perfect fit as a partnership with both company's Formula One and technology backgrounds.

The iStream® manufacturing system which incorporates Formula One composite technology delivers new levels of lightweight, safety, vehicle dynamics and manufacturing flexibility alongside low environmental impact.

The MOTIV.e design reflects Yamaha's rich heritage in high quality lifestyle products while introducing a technical and dynamic shape which is inspired by Yamaha Motor's Motorcycle products. The iStream® design is centred on a steel frame incorporating bonded composite monocoque panels to produce a lightweight, rigid safety cell. All independent suspension and low unsprung weight delivers new levels of ride and handling. The all-new electric powertrain has been designed using 'state of the art' materials and technology.

The MOTIV.e represents a new starting point for urban mobility vehicles and sets new standards in the ultra compact 4 wheeler segment.

Formula E electric single seater racing car – Track Debut [VIDEO]

The fully-electric Spark Renault SRT_01E made its successful track debut at a circuit near La Ferté Gaucher, 80km east of Paris, France.

In the hands of Lucas di Grassi, it completed 40 laps during the two-day run, the objective of which was to perform an overall systems check. For the purpose of this initial test, the Spark-Renault was equipped with smaller battery, limiting the maximum power to 50 kW instead of the 200kW (270hp) peak power the car will produce in its final trim.

“It is a great feeling to be driving the Formula E car for the first time,” said Di Grassi. “I can assure all the drivers they will have a lot of fun with this car – even with just a quarter of the power, it has quite a lot of grip and the electric motor produces huge torque."

Mitsubishi GC-PHEV plug-in concept SUV [VIDEO]

The Mitsubishi Concept GC-PHEV blazes new trails with powerful driving performance thanks to its full-time 4WD Plug-in Hybrid EV System; excellent stability and road handling that S-AWC (Super All Wheel Control) provides; and information power that an innovative human interface and Connected Car technology together bring. Offering the latest environmental performance, this vehicle empowers you to drive freely on the Earth while enjoying safety and peace of mind. Experience the reliability and satisfaction of driving the Mitsubishi Concept GC-PHEV.

EXTERIOR
A dynamic front face with SUV personality. A futuristic form that looks sculpted from a single block and wraps the vehicle with the strength to drive on any road.

INTERIOR
When you open the easy-access doors with no center pillar, the spacious cabin and futuristic interface catch your eye. Enter a progressive informational space that stimulates your adventurous heart. The door to a new driving experience is now opening.

CONNECTED "TACTICAL TABLE"
A large interface with a touch screen, sweeping wide through the center, collects information that passengers bring, information from the internet, and data accumulated by the vehicle itself, allowing the creation of original maps and driving plans that occupants can share as they connect with the world. The Connected Car possibilities expand from here.

AR WINDSHIELD
Vital driving information is displayed on the windshield to enhance navigation and warn of car distances and lane departures. A driving assist system that uses communication technology also enhances driving safety by notifying the driver with guidance and a warning when vehicles or pedestrians enter blind spots in intersections. AR:Augmented Reality

NEW PHEV SYSTEM
The FR-type Plug-in Hybrid EV system effectively employs engine and motor power. The 3.0-liter V6 supercharged MIVEC engine is assisted by a 70kW high output motor that provides dynamic performance. This system realizes low energy consumption while achieving CO2 emissions under 100 g/km and supremely quiet operation. SPECIFICATION : CONCEPT GC-PHEV

■Overall length / Overall width / Overall height (mm): 4930 / 1940 / 1980
■Seating capacity: 4
■Targeted hybrid fuel consumption: 15 km/L or more
■Targeted EV cruising distance: 40 km or more
■Engine type: 3.0-liter V6 supercharged MIVEC engine / Max. output: 250 kW
■Motor: Max. output: 70 kW
■Total battery electric power: 12 kWh
■Wheel drive: Full-time 4WD
■Transmission: 8-speed automatic

Nissan BladeGlider Wheel Motor Powered EV Concept [VIDEO]

More than a concept, Nissan BladeGlider is both a proposal for the future direction of Nissan electric vehicle (EV) development and an exploratory prototype of an upcoming production vehicle from the world's leading EV manufacturer. BladeGlider was developed with form following function. Nissan crafted the vehicle's unique architecture to give the driver and passengers "sustainable exhilaration" - a fresh electric vehicle driving experience based on peerless technology and exotic styling.

Targeting the visionary individual seeking visceral driving and sustainability, BladeGlider goes beyond sheer power and acceleration to send the heart soaring into new realms of smooth "gliding" pleasure. It is a physical demonstration of the innovation and excitement of the Nissan brand and Nissan's Zero Emissions Mobility leadership. BladeGlider's pioneering spirit distinguishes it from anything yet envisioned for EVs and destines it to rule the roads of the not-so-distant future.

Re-inventing the Performance Car - A Game Changer Designed from Scratch

A clean slate was the starting point for this project, led by Francois Bancon, division general manager of Product Strategy and Product Planning at Nissan. "The goal was to revolutionise the architecture of the vehicle to provoke new emotions, provide new value and make visible for consumers how Zero Emissions can help redefine our conception of vehicle basics," said Bancon.

BladeGlider's shape alone, with its narrow front track, challenges the orthodoxy that has dominated the roads since the earliest days of the internal combustion engine. The revolutionary nature of the car is more than skin deep. New possibilities for the designers and engineers were opened up by the unique characteristics of electric vehicles.

BladeGlider has its conceptual roots in two aerial images: the soaring, silent, panoramic freedom of a glider and the triangular shape of a high performance "swept wing" aircraft.

It is therefore fitting that, in terms of engineering, BladeGlider's developmental focus was aerodynamics: achieving low drag (cdA) while generating road-hugging downforce.

Disruptive and challenging to the status quo, BladeGlider shares sustainable engineering values with both Nissan LEAF - the best-selling EV in history ─and the Nissan ZEOD RC (Zero Emission On Demand Racing Car), which will make its debut at next year's Le Mans 24 Hour race.

A Provocative Shift in the Engineering Paradigm

With its narrow, 1.0 metre lightweight front track and wide, stable rear track, BladeGlider looks as if it could have sprung from a "skunk works" project. But the radical architecture all boils down to aerodynamics and balance. Having the front wheels close together reduces drag and enhances manoeuvrability for high-G cornering power, assisted by its 30/70 front/rear weight distribution ratio. Aerodynamic downforce is created by the highly rigid yet lightweight carbon-fibre underbody, hence the lack of drag-inducing wings.

When BladeGlider matures into a production car, it could be Nissan's first use of in-wheel motors. The in-wheel motors provide rear-wheel propulsion with independent motor management, while also contributing to freedom of upper body design and space-efficient packaging.

To power the electric motors, BladeGlider employs Nissan's innovative lithium-ion battery technology, proven in Nissan LEAF. Battery modules are mounted low and towards the rear to enhance stability and handling.

Revolutionary Breakthrough in High-Performance Design

BladeGlider embodies a fearless vision of the EV future. Its tightly streamlined deltoid body comprises a tough and structurally optimised chassis wrapped in ultra-lightweight, yet strong and stiff, carbon fibre reinforced plastic (CFRP) finished in a pearlescent white colour that evokes the pristine freedom of a glider. The racing-inspired exterior features a sculpted contour that is both functional and breathtakingly beautiful. Starting from the low, flat and narrow nose, the body line rises gracefully to the cockpit canopy and then curves forcefully back over the large rear wheels, evoking a sense of dynamic movement even when the vehicle is standing still.

"BladeGlider was conceived around delivering a glider-like exhilaration that echoes its lightweight, downsized hyper-efficient aerodynamic form," said Shiro Nakamura, Nissan's senior vice president and chief creative officer. "This design is more than revolutionary; it's transformational, applying our most advanced electric drive-train technology and racetrack-inspired styling in the service of a new dimension of shared driving pleasure."

Inside the canopy, the cockpit seats three in a triangular configuration with the driver centre-forward. Seating appointments feature special light and comfortable coverings with yellow fluorescent lines. Amid simple yet edgy interior styling cues, an aircraft-type steering wheel and state-of-the-art instrumentation technology complete the glider-like image. To support maximum EV cruising efficiency, the IT system can display relief maps and atmospheric conditions.

This efficient, aerodynamic, simple, and lightweight vehicle provides a "gliding" feel that combines the feeling of gravity-defying freedom and near-360 degree view of a glider with the pulse-quickening exhilaration of a race car.

"I think that the excitement of the racing car should be mirrored in the excitement of driving the road car," said Ben Bowlby, director of Nissan Motorsport Innovation, who has supported the BladeGlider's development. "I think there are elements we can bring from the race track to make these future road cars more exciting, more fulfilling and give greater driving pleasure."

As a rear-drive performance car, BladeGlider exhibits a coherent and linear handling that enables it to consistently hug road curves, providing feedback for intuitive and exhilarating steering control when cornering under threshold conditions.

Augmenting BladeGlider's aerodynamically-engineered precise feedback and control, the canopy-like visibility of the driving position engenders a synchronised feeling of oneness with the machine and the road. The result is a free soaring experience which the driver can share with two passengers in the V-shaped seating configuration. Passengers sit at the longitudinal centre of gravity to maintain the car's balance at all times. The centre-driving setting of the cabin space is designed to enhance the driver's sensatory experience. 

As a final touch, the driver's seat automatically slides laterally when you open the door, enabling easy access to passenger seats.

New EV Values for the Next Generation

By thinking outside the box, Nissan has created an EV that truly symbolises the unlimited potential of electric propulsion - balancing zero emissions with innovative excitement like never before.

Honda NSX Hybrid to use turbocharged engine [VIDEO]

The Honda NSX will be powered by a twin-turbocharged V6 engine, instead of the naturally aspirated V6 originally planned, according to internet reports.

The U-turn was revealed when the Japanese car manufacturer demonstrated a mock-up twin-turbo V6 unit during a media event on the eve of the Tokyo motor show.

Unlike the original NSX, the new model will have its powerplant mounted longitudinally instead of transversely. Two of the Honda NSX's perceived rivals - the McLaren 12C and Ferrari 458 Italia - both have their engines mounted longitudinally.

The engine, which will be completely unique to the NSX, is planned to be mated to Honda's SH-AWD (super handling all-wheel drive) system that uses a three-motor (one for each front wheel and a third one integrated into the engine as a motor generator) hybrid layout.

Putting the finishing touches to the powertrain will be a new dual-clutch transmission, but Honda officials are yet to finalise the number of ratios.

MIT researchers find a way to boost lithium-air battery performance [VIDEO]

Lithium-air batteries have become a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges, including the need to develop better, more durable materials for the batteries’ electrodes and improving the number of charging-discharging cycles the batteries can withstand.

Now, MIT researchers have found that adding genetically modified viruses to the production of nanowires — wires that are about the width of a red blood cell, and which can serve as one of a battery’s electrodes — could help solve some of these problems.

The new work is described in a paper published in the journal Nature Communications, co-authored by graduate student Dahyun Oh, professors Angela Belcher and Yang Shao-Horn, and three others. The key to their work was to increase the surface area of the wire, thus increasing the area where electrochemical activity takes place during charging or discharging of the battery.

The researchers produced an array of nanowires, each about 80 nanometers across, using a genetically modified virus called M13, which can capture molecules of metals from water and bind them into structural shapes. In this case, wires of manganese oxide — a “favorite material” for a lithium-air battery’s cathode, Belcher says — were actually made by the viruses. But unlike wires “grown” through conventional chemical methods, these virus-built nanowires have a rough, spiky surface, which dramatically increases their surface area.

Belcher, the W.M. Keck Professor of Energy and a member of MIT’s Koch Institute for Integrative Cancer Research, explains that this process of biosynthesis is “really similar to how an abalone grows its shell” — in that case, by collecting calcium from seawater and depositing it into a solid, linked structure.

The increase in surface area produced by this method can provide “a big advantage,” Belcher says, in lithium-air batteries’ rate of charging and discharging. But the process also has other potential advantages, she says: Unlike conventional fabrication methods, which involve energy-intensive high temperatures and hazardous chemicals, this process can be carried out at room temperature using a water-based process.

Also, rather than isolated wires, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode.

A final part of the process is the addition of a small amount of a metal, such as palladium, which greatly increases the electrical conductivity of the nanowires and allows them to catalyze reactions that take place during charging and discharging. Other groups have tried to produce such batteries using pure or highly concentrated metals as the electrodes, but this new process drastically lowers how much of the expensive material is needed.

Altogether, these modifications have the potential to produce a battery that could provide two to three times greater energy density — the amount of energy that can be stored for a given weight — than today’s best lithium-ion batteries, a closely related technology that is today's top contender, the researchers say.

Belcher emphasizes that this is early-stage research, and much more work is needed to produce a lithium-air battery that’s viable for commercial production. This work only looked at the production of one component, the cathode; other essential parts, including the electrolyte — the ion conductor that lithium ions traverse from one of the battery’s electrodes to the other — require further research to find reliable, durable materials. Also, while this material was successfully tested through 50 cycles of charging and discharging, for practical use a battery must be capable of withstanding thousands of these cycles.

While these experiments used viruses for the molecular assembly, Belcher says that once the best materials for such batteries are found and tested, actual manufacturing might be done in a different way. This has happened with past materials developed in her lab, she says: The chemistry was initially developed using biological methods, but then alternative means that were more easily scalable for industrial-scale production were substituted in the actual manufacturing.

Jie Xiao, a research scientist at the Pacific Northwest National Laboratory who was not involved in this work, calls it “a great contribution to guide the research on how to effectively manipulate” catalysis in lithium-air batteries. She says this “novel approach … not only provides new insights for lithium-air batteries,” but also “the template introduced in this work is also readily adaptable for other catalytic systems.”

In addition to Oh, Belcher, and Shao-Horn, the work was carried out by MIT research scientists Jifa Qi and Yong Zhang and postdoc Yi-Chun Lu. The work was supported by the U.S. Army Research Office and the National Science Foundation.

Mitsubishi Electric to Exhibit EMIRAI 2 EV concept car @ Tokyo Motor Show [VIDEO]

Mitsubishi Electric will display its EMIRAI 2 concept car at this year’s Tokyo Motor Show. The car is a continuation of the original EMIRAI first exhibited in December 2011 with rear projection customizable dashboard display, biometrics capabilities, and sensor array.

Advanced automotive technologies and products will be displayed in two EMIRAI 2 electric-vehicle concept cars. One vehicle features an EV powertrain and the other a driving-assistance system to offer safer and more comfortable driving experiences in the coming future.

The EV powertrain system incorporates high-accuracy traction control and acceleration control. The driving-assistance system features integrated image sensing and powered on-board display technologies.

The show will be held at the Tokyo Big Sight exhibition complex in Tokyo, Japan from November 23 to December 1.