Toyota Improve hybrid fuel efficiency by 10% with SiC Inverter

Toyota in collaboration with Denso has developed a silicon carbide (SiC) power semiconductor for use in automotive power control units. Toyota will begin test driving vehicles fitted with the new PCUs on public roads in Japan within a year.

Through use of SiC power semiconductors, Toyota aims to improve hybrid vehicle fuel efficiency by 10 percent under the Japanese Ministry of Land, Infrastructure, Transport and Tourism's JC08 test cycle and reduce PCU size by 80 percent compared to current PCUs with silicon-only power semiconductors. SiC power semiconductors have low power loss when switching on and off, allowing for efficient current flow even at higher frequencies. This enables the coil and capacitor, which account for approximately 40 percent of the size of the PCU, to be reduced in size.

PCUs play an important role in hybrids and other vehicles with an electrified powertrain: they supply electrical power from the battery to the motor to control vehicle speed, and also send electricity generated during deceleration to the battery for storage. However, PCUs account for approximately 25 percent of the total electrical power loss in HVs, with an estimated 20 percent of the total loss associated with the power semiconductors alone. Therefore, a key way to improve fuel efficiency is to improve power semiconductor efficiency, specifically by reducing resistance experienced by the passing current. Since launching the “Prius” gasoline-electric HV in 1997, Toyota has been working on in-house development of power semiconductors and on improving HV fuel efficiency.

As SiC enables higher efficiency than silicon alone, Toyota CRDL and Denso began basic research in the 1980s, with Toyota participating from 2007 to jointly develop SiC semiconductors for practical use. Toyota has installed the jointly developed SiC power semiconductors in PCUs for prototype HVs, and test driving on test courses has confirmed a fuel efficiency increase exceeding 5 percent under the JC08 test cycle.

In December last year, Toyota established a clean room for dedicated development of SiC semiconductors at its Hirose Plant, which is a facility for research, development and production of devices such as electronic controllers and semiconductors.

In addition to improved engine and aerodynamic performance, Toyota is positioning high efficiency power semiconductors as a key technology for improving fuel efficiency for HVs and other vehicles with electrified powertrains. Going forward, Toyota will continue to boost development activities aimed at early implementation of SiC power semiconductors.

Toyota will exhibit the technology at the 2014 Automotive Engineering Exposition, to be held from May 21 to May 23 at the Pacifico Yokohama convention center in Yokohama.

BMW to launch Carbon Fiber wheels

BMW could offer entire wheels in carbon fiber reinforced plastic, are close to production and available in one or two years. According to BMW the full-CFRP wheel is 35-percent lighter than a forged alloy wheel, and the one using a CFRP rim and alloy spokes will be 25-percent lighter.

Innovative use of materials in the BMW i3 and BMW i8.
Systematic lightweight design is particularly important on electrically powered vehicles, given that vehicle weight is one of two main constraints on vehicle range, along with battery capacity. For EVs, too, reduced weight means reduced energy consumption and improved driving dynamics. In order to offset the weight penalty of the electric components, the BMW Group came up with a rigorous lightweight design strategy for the BMW i brand in the form of the LifeDrive concept, an innovative vehicle architecture which for the first time combines an aluminium chassis and a CFRP passenger cell.

CFRP: high-tech material of the future.
Carbon-fibre-reinforced plastic (CFRP) boasts a particularly favourable strength-to-weight ratio and is therefore an ideal material for use in the vehicle body. For the same functionality, CFRP is around 30 per cent lighter than aluminium and 50 per cent lighter than steel. Used in the right places, this material therefore reduces weight, optimises the vehicle’s centre of gravity and improves body strength. This material is currently being used not only in the new BMW i3 and BMW i8 models: the sporty BMW M3/M4 and BMW M6 models have likewise been utilising the benefits of this high-tech material for some time. Components such as their roof and bumper supports are made of CFRP. The BMW Group is currently working on further potential applications, including the use of this material in rotating-mass components. Examples include hybrid aluminium/CFRP wheel rims, while CFRP’s high rigidity and low weight allow the CFRP propeller shaft on the BMW M3/M4 to be produced as a single-piece component, without a centre bearing. This results in 40 per cent weight savings over the previous model and reduced rotating masses, leading to further improved response.

In future, other BMW and MINI models will also benefit from this lightweight material in various ways. For example, production offcuts can be reprocessed into “secondary” (recycled-content) CFRP, which can be used to reduce the weight of components such as seat frames, instrument panel frames and spare wheels by up to 30 per cent, with simultaneous improvements in terms of cost-efficient, environmentally friendly manufacturing.

Technology leader in mass production of CFRP components.
After more than ten years of intensive research, resulting in improvements to processes, materials, production machinery and tools, the BMW Group has today become the first and only car manufacturer in the world with the necessary know-how to use CFRP in mass production. The processing technology used is unique and cycle times for even the more complex CFRP components are unusually short. The same is true of the specially developed bonding process used in the fully automated assembly of body parts.

As well as setting standards in the production of CFRP finished components, the BMW Group also attaches utmost importance to the use of environmentally friendly, resource-efficient and largely CO2-free processes in the manufacture and processing of the raw materials themselves. From fibre production right through to recycling of fibres and composites, the company is involved in all the various process steps in a state-of-the-art CFRP production chain that begins in Moses Lake in the USA and moves through Wackersdorf and Landshut to final assembly in Leipzig.

DENSO to Test Wireless Charging System

Global automotive supplier DENSO Corporation will begin a ten-month field test of its wireless battery charging system in Toyota City, Aichi Prefecture, Japan. The field test is intended to identify any potential operational issues and also look at ways to enhance the convenience of wireless charging. The field test will begin on Feb. 24 and end in December 2014.

How it works:

When there are two coils apart, electric current can flow through one coil by applying electricity to the other coil. The wireless charging system uses this mechanism to wirelessly transmit power from a power transmission pad on the ground to a power-receiving pad equipped on a vehicle.

For the test, DENSO has equipped a Yamato Transport delivery truck with a power receiver that will wirelessly receive the energy from a power transmission pad located on the pavement of a 7-Eleven convenience store parking lot. The electricity charged in the truck’s battery is then used to power the refrigeration system while the engine is stopped during pickups and deliveries. Not only will the system improve convenience, but it will also help reduce emissions of refrigeration trucks since the battery will continue to power the refrigeration system even when the engine is off.

DENSO has been developing the wireless charging system with the goal to commercialize by 2020. DENSO is working to reduce the size, weight, and cost of the system while also looking to enhance convenience.

In Japan, Toyota City is designated as an experimental city for next-generation energy sources and social systems, a program which has been promoted by Japan's Ministry of Economy, Trade and Industry since April 2010.

Mitsubishi Develops EV Motor Drive with Built-in Silicon Carbide Inverter

Mitsubishi Electric today announced it has developed a prototype electric vehicle (EV) motor drive system with a built-in silicon-carbide inverter. The EV motor drive system, the smallest of its kind, will enable manufacturers to develop EVs offering more passenger space and greater energy efficiency.

Mitsubishi Electric plans to commercialize its new EV motor system after finalizing technologies for motor/inverter cooling, further downsizing and additional efficiency.

Features

1)Downsized motor drive system with integrated all silicon-carbide inverter
-Achieves further system downsizing (14.1L, 60kW) with smaller motor resulting from improved thermal resistance between motor drive system and cooling system.
-Equal to existing EV motors in power and volume, enabling replacement.
2)Improved motor cooling performance
-Integrates cooling system for motor and inverter thanks to cylindrical shape of power module accommodating parallel cooling ducts for motor and inverter.
-Ensures stable cooling with even a low-power pump.

Global demand for EVs and hybrid EVs (HEVs) has been growing in recent years, reflecting increasingly strict regulations for fuel efficiency and growing public interest in saving energy resources and reducing carbon dioxide emissions. As EVs and HEVs require relatively large spaces to accommodate their robust battery systems, there is a strong need to reduce the size and weight of motor systems and other equipment to ensure sufficient passenger space.

Patents
Pending patents for the technology announced in this news release number 94 in Japan and 29 abroad.

Maxwell & SK to Develop Integrated Lithium Ion Battery-Ultracapacitor

Maxwell Technologies announced today that it has signed a Memorandum of Understanding with SK Innovation, a subsidiary of SK Holdings and Korea's leading energy provider, to develop next generation energy storage solutions leveraging the complementary characteristics of SK's lithium ion batteries and Maxwell's ultracapacitors.

The two companies will explore and identify global commercial opportunities for products that enable enhanced functionality and improve energy efficiency in industrial, transportation and other markets. Lithium ion batteries are characterized by their high energy density, while ultracapacitors offer rapid charge and discharge capabilities, reliable performance in extreme temperature conditions and long operational life.

"As our name implies, we are seeking to move beyond the limitations of existing technologies to develop and deliver products that better meet the requirements of the most demanding energy storage and power delivery applications," said Stephen J. Kim of SK Innovation's battery division. "Our goal is to develop truly differentiated products that will create large new opportunities for both companies."

"While our respective products currently meet the needs of many applications as stand-alone solutions, Maxwell has always believed that ultracapacitors and batteries can be integrated to provide optimized products that offer the best of both worlds in terms of energy and power," said David Schramm, Maxwell's president and chief executive officer. "We are very pleased to have found a major lithium-ion battery producer in SK Innovation that is willing to invest in joint product and market exploration."

MIT researchers find a way to boost lithium-air battery performance [VIDEO]

Lithium-air batteries have become a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges, including the need to develop better, more durable materials for the batteries’ electrodes and improving the number of charging-discharging cycles the batteries can withstand.

Now, MIT researchers have found that adding genetically modified viruses to the production of nanowires — wires that are about the width of a red blood cell, and which can serve as one of a battery’s electrodes — could help solve some of these problems.

The new work is described in a paper published in the journal Nature Communications, co-authored by graduate student Dahyun Oh, professors Angela Belcher and Yang Shao-Horn, and three others. The key to their work was to increase the surface area of the wire, thus increasing the area where electrochemical activity takes place during charging or discharging of the battery.

The researchers produced an array of nanowires, each about 80 nanometers across, using a genetically modified virus called M13, which can capture molecules of metals from water and bind them into structural shapes. In this case, wires of manganese oxide — a “favorite material” for a lithium-air battery’s cathode, Belcher says — were actually made by the viruses. But unlike wires “grown” through conventional chemical methods, these virus-built nanowires have a rough, spiky surface, which dramatically increases their surface area.

Belcher, the W.M. Keck Professor of Energy and a member of MIT’s Koch Institute for Integrative Cancer Research, explains that this process of biosynthesis is “really similar to how an abalone grows its shell” — in that case, by collecting calcium from seawater and depositing it into a solid, linked structure.

The increase in surface area produced by this method can provide “a big advantage,” Belcher says, in lithium-air batteries’ rate of charging and discharging. But the process also has other potential advantages, she says: Unlike conventional fabrication methods, which involve energy-intensive high temperatures and hazardous chemicals, this process can be carried out at room temperature using a water-based process.

Also, rather than isolated wires, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode.

A final part of the process is the addition of a small amount of a metal, such as palladium, which greatly increases the electrical conductivity of the nanowires and allows them to catalyze reactions that take place during charging and discharging. Other groups have tried to produce such batteries using pure or highly concentrated metals as the electrodes, but this new process drastically lowers how much of the expensive material is needed.

Altogether, these modifications have the potential to produce a battery that could provide two to three times greater energy density — the amount of energy that can be stored for a given weight — than today’s best lithium-ion batteries, a closely related technology that is today's top contender, the researchers say.

Belcher emphasizes that this is early-stage research, and much more work is needed to produce a lithium-air battery that’s viable for commercial production. This work only looked at the production of one component, the cathode; other essential parts, including the electrolyte — the ion conductor that lithium ions traverse from one of the battery’s electrodes to the other — require further research to find reliable, durable materials. Also, while this material was successfully tested through 50 cycles of charging and discharging, for practical use a battery must be capable of withstanding thousands of these cycles.

While these experiments used viruses for the molecular assembly, Belcher says that once the best materials for such batteries are found and tested, actual manufacturing might be done in a different way. This has happened with past materials developed in her lab, she says: The chemistry was initially developed using biological methods, but then alternative means that were more easily scalable for industrial-scale production were substituted in the actual manufacturing.

Jie Xiao, a research scientist at the Pacific Northwest National Laboratory who was not involved in this work, calls it “a great contribution to guide the research on how to effectively manipulate” catalysis in lithium-air batteries. She says this “novel approach … not only provides new insights for lithium-air batteries,” but also “the template introduced in this work is also readily adaptable for other catalytic systems.”

In addition to Oh, Belcher, and Shao-Horn, the work was carried out by MIT research scientists Jifa Qi and Yong Zhang and postdoc Yi-Chun Lu. The work was supported by the U.S. Army Research Office and the National Science Foundation.

Graphene Supercapacitors Ready For Electric Vehicles

Automakers are always searching for ways to improve the efficiency, and therefore the range, of electric vehicles. One way to do this is to regenerate and reuse the energy that would normally be wasted when the brakes slow a vehicle down.

There is a problem doing this with conventional batteries, however. Braking occurs over timescales measured in seconds but that’s much too fast for batteries which generally take many hours to charge. So car makers have to find other ways to store this energy.

One of the more promising is to use supercapacitors because they can charge quickly and then discharge the energy just as fast.

Researchers at the Gwangju Institute of Science and Technology in Korea say they have developed a high-performance graphene supercapacitors that stores almost as much energy as a lithium-ion battery, can charge and discharge in seconds and maintain all this over many tens of thousands of charging cycles.

The Koreans say they have perfected a highly porous form of graphene that has a huge internal surface area. This is created by reducing graphene oxide particles with hydrazine in water agitated with ultrasound.

The graphene powder is then packed into a coin-shaped cell, and dried at 140 degrees C and at a pressure of 300/kg/cm for five hours.

The resulting graphene electrode is highly porous. A single gram has a surface area bigger than a basketball court. That’s important because it allows the electrode to accomodate much more electrolyte (an ionic liquid called EBIMF 1 M). And this ultimately determines the amount of charge the supercapacitor can hold.

Santhakumar Kannappan at the Gwangju Institute of Science and Technology have measured the performance of their supercapacitor at a specific capacitance of over 150 Farrads per gram that can store energy at a density of more than 64 Watt hours per kilogram at a current density of 5 Amps per gram.

That’s almost comparable with lithium-ion batteries which have an energy density of between 100 and 200 Watt hours per kilogram.

These supercapacitors have other advantages too. Kannappan and co say they can fully charge them in just 16 seconds and have repeated this some ten thousand times without a significant reduction in capacitance. “These values are the highest so far reported in the literature,” they say.

Volvo Developing Wireless Charging for Electric Vehicles

The Swedish car manufacturer has announced the development of an energy transfer technology that uses electromagnetic fields. Long term, Volvo sees the technology leading to cordless charging solutions for its hybrid and all-electric vehicles.

In an official press release, Volvo's Vice President for Electric Propulsion Systems, Lennart Stegland, announced that “inductive charging has great potential” and is “a comfortable and effective way to conveniently transfer energy.” Volvo's tests also indicated that the method is safe, although there are currently no common standards for charging vehicles using induction, a fact that makes it difficult to bring it to mainstream consumers in the near future. Nonetheless, Volvo will continue researching the concept and will soon evaluate the feasibility of integrating it into future hybrid and all-electric cars.

Inductive charging uses electromagnetic fields to transfer energy from one source to another. One induction coil, located in the power source, creates an alternating electromagnetic field, while a second coil draws the energy from the first to recharge the vehicle's battery. Charging begins automatically as soon as the vehicle is positioned over the charging apparatus, without requiring the use of cables or plugs. Volvo claims that the technology is already used today in a number of home appliances, such as electric toothbrushes.

The research project was carried out in partnership with Flanders' Drive, an automotive industry think tank in Belgium. The study showed that it is possible to recharge the Volvo C30 Electric without the use of cables in 2 hours and 30 minutes.

WiTricity Secures Additional $25 Million in Funding

WiTricity announced today it has secured $25 million in Series E financing from new and existing investors, including Intel Capital and Hon Hai/Foxconn, one of the world’s largest consumer electronics manufacturers. The funding will support the company’s growth strategy as it further develops designs and products for wireless charging in the consumer electronics, electric vehicles, defense and medical device industries, as well as allowing WiTricity to pursue other strategic growth opportunities in the wireless power field.

“WiTricity’s vision is to usher in a world where wireless power is so ubiquitous, you never have to think about plugging in again,” said WiTricity CEO Eric Giler. “In securing this funding from our investors we are even more effectively positioned to fulfill that vision and deliver game-changing wireless technology to partners and customers around the globe.”

The announcement marks the next phase in WiTricity’s continued growth as a leader in the wireless power space. According to analyst firm IMS Research, the global market for wireless power will grow 86.5 percent annually to be worth $4.5 billion in 20161. As the inventor of Highly Resonant Wireless Power Transfer, WiTricity is poised to capture that market through existing and new partnerships with major manufacturers including Audi, Mitsubishi, Delphi, Haier, IHI, MediaTek and Thoratec.

With this infusion of $25 million, WiTricity’s investment funding now totals $45 million. In addition, the company recently secured its 50th patent, positioning it even more strongly for growth and success in the global market.

WiTricity have previously announced wireless electric vehicle charging partnerships with Audi, Toyota, Delphi, Mitsubishi and IHI.

San Diego Gets First Public SAE Fast-Charging Station for EVs

The SAE International DC “Combo” Fast Charge station installation at the Fashion Valley Mall in San Diego is a milestone for plug-in electric vehicles – the first public installation in the U.S. of an industry-coordinated standard for fast charging of plug-in electric vehicles.

The Chevrolet Spark EV, available in California and Oregon, will be the first EV in the U.S. to offer the SAE International fast-charge connector as a vehicle option starting in late December.

“The launch of these new charge stations will help improve the convenience and adoption of electric vehicles because they dramatically reduce the charge time,” said Pamela Fletcher, executive chief engineer of electrified vehicles at General Motors. “The SAE Combo DC fast charge stations are the result of EV industry collaboration to help customers benefit from available public infrastructure.”

The new combined AC and DC charging, or combo, connector is accessible via a single charge port on the vehicle and allows electricity to flow at a faster rate, making EVs more convenient for longer trips and for EV owners who may lack convenient access to overnight home charging.

“San Diego Gas & Electric applauds the collaborative efforts it took to make San Diego home to the world’s first retail SAE DC fast charge station,” said Lee Krevat, director of smart grid and clean transportation for the utility. “Our local drivers that have vehicles equipped with this charging system connector will be the true beneficiaries of this technology.”

Many major automakers including GM, Ford, Chrysler, BMW, Daimler, Volkswagen, Audi and Porsche have announced they will adopt the SAE combo fast charge connector standard. Earlier, many of the world’s major automakers had adopted the SAE’s 120V/240V AC connector standard to assure plug-in vehicles could access all charging infrastructure regardless of vehicle make or model.