Nissan BMW Renault and VW unite to form Rapid Charge Network

A partnership of Battery Electric Vehicle (BEV) manufacturers have joined forces through the European Union's TEN-T programme to create a multi-standard and inter-operable charging network through the United Kingdom and Ireland.

As well as helping to finance the scheme, the consortium is providing other members of the project with the benefit of its extensive experience in the BEV field.

This is the first time leading BEV companies Renault, Nissan, BMW and Volkswagen have united to accelerate the growth of EV charging infrastructure, seen as a key enabler towards making zero-emission mobility a market reality. The project, managed by Zero Carbon Futures in North East England also draws on the network expertise of ESB, one of Ireland's foremost energy company and leader of a previous TEN-T project completed this summer, and Newcastle University.

When complete, the UK Rapid Charge Network (RCN) will comprise more than 70 multi standard rapid chargers covering some 1,100km of major trunk routes and providing EV-friendly links to five seaports and five international airports.

Running on two priority road axis on the mainland, the UK RCN will link major ports and cities including Stranraer, Liverpool, Holyhead, Birmingham, Felixstowe, Leeds and Kingston upon Hull while there will also be networks embracing Dublin, Ireland and Belfast, Northern Ireland.

Significantly, the rapid chargers are the latest state-of-the-art multi-standard units and are compatible with cars using 44kW CCS, 44kW CHAdeMO or 43kW AC systems. This will ensure that EV drivers travelling in the UK can undertake long journeys secure in the knowledge that they will never be far from a rapid charger.

Ten rapid chargers have been already installed with a further 28 sites soon to be commissioned.

The UK RCN is part of the European Union-financed Trans European Transport Network (TEN-T) and represents a substantial partnership investment of €7,358,000, half of which is being funded by the EU.

A significant portion of the BEV manufacturers' contribution to the overall costs will be used to fund a research program, led by Newcastle University. This will aim to confirm the benefits of such an advanced inter-operable EV rapid charging network.

Strategic information gathered from users, including customer charging behaviour and changes in mobility patterns, will help plan the roll-out future rapid charging infrastructure in member states across Europe.

Tesla expect another ‘Significant’ Toyota deal by 2017

During a recent trip to Japan, Tesla CEO Elon Musk says his company and Toyota could team on another “significant” joint project in two or three years, and at higher volumes than the soon-to-end RAV4 program.

Musk’s comments came just four months after Tesla Motors Inc. announced that the agreement to supply battery packs for the electric Toyota crossover would finish this year with sales around 2,500.

Musk said there were no concrete plans for a new vehicle with Toyota but dangled the possibility of a bigger project soon.

“I think that if you look out maybe two or three years from now, that I would not be surprised if there is a significant deal with Toyota,” Musk said today at a ceremony to deliver the first Tesla Model S sedans to customers in Japan.

“My best guess is that it would probably be something significant, maybe on a much higher volume level,” he said.

Toyota Motor Corp., which owns 2.4 percent of Tesla, said in May 2012 it envisioned building around 2,500 RAV4 EVs over three years. When the partners announced in May that the program would wrap this year, they were noncommittal about future projects.

The Japanese and American companies have since sparred over alternative visions for tomorrow’s alternative drivetrains.

Toyota has channeled its focus into hydrogen fuel cells, while dismissing EVs as impractical and impossibly short-ranged. Meanwhile, Tesla has beat the drum for batteries, while deriding cars powered by hydrogen stacks as “fool cells.”

Toyota spokesman Dion Corbett said the world’s biggest carmaker had “nothing to say” in response to Musk’s latest overture.

Toyota sold 2,130 RAV4 EVs through August. The company expects to sell the rest of the planned 2,500 by year’s end.

After those are delivered, Toyota will have neither a single EV nameplate in its lineup nor public plans to add one.

Musk was not expected to meet with Toyota officials during his visit to Japan. While in Tokyo, he handed over the keys to nine new Model S sedans on the 52nd-floor observatory of Roppongi Hills Mori Tower, one of the tallest buildings in town.

“We love working with Toyota,” he said. “We have a huge amount of respect for them as a company and certainly much to learn.”

Sales of BMW’s electric car jump in August [VIDEO]

Sales in the United States of BMW electric cars jumped in August, inching closer or, depending on whom you ask, even surpassing sales of Tesla Motors luxury Model S sedan.

The continued success of BMW’s i3 model, which sells for about $41,000 in the U.S., could pressure Tesla and dampen enthusiasm for its Model 3, Tesla’s mass-produced car that is expected to hit the road within the next two or three years. The Model 3 would carry a sticker price of about $35,000.

Tesla last week said it chose Nevada as the site of its battery factory, expected to churn out more and cheaper batteries -- enough to power Tesla’s through its expansion into the mass market.

Tesla shares rose on intraday and closing records of $291.42 and $286.04, respectively, on Thursday. The stock was hit by profit-taking — and comments by CEO Elon Musk, who called Tesla shares “kind of high” — on Friday.

BMW sold 1,025 BMW i3s in August, according to industry and analyst reports, up from less than 400 units in the previous three months. The car was launched in the U.S. in May.

Tesla’s Model S sales in August were estimated at around 1,600 by Autodata Corp, 18% lower year-on-year. Tesla does not release monthly car sales.

Tesla is expected to launch the next vehicle in its line up, the crossover Model X, next year.

Back in May, analysts at Barclays flagged BMW’s electric-car offerings — which include the more expensive, sporty hybrid plug-in i8 — as a threat to Tesla. Tesla’s target audience is likely sandwiched between the i3 and the i8 models, the analysts said.

Fully Charged VW Golf GTE Plug-In Hybrid [VIDEO]

Robert Llewellyn takes a brief test drive of the soon to be launched Volkswagen Golf GTE, the first plug in hybrid Golf.

With a 1.4 litre TSI petrol engine, 100 HP electric motor coupled to a 6 speed DSG gearbox and 8.8 kWh battery pack, the GTE can cover 0 - 100 km/h in 7.6 sec and returns 1.5L/100km.

Tesla Model S Vs Sunswift eVe.. 500 km range on 1/5 the battery capacity

Recently EV News had the opportunity to test drive two electric vehicles with 500 km range within a fortnight of each other. One, a world record breaking electric car, the University of New South Wales Sunswift eVe solar race car and the other a Tesla Model S P85+.

I wrote last year how in many ways the two share a common heritage with technology in the Tesla having a direct evolutionary path from the inaugural World Solar Challenge in 1987. While I was massively impressed by my short drive in the top-of-the-line Model S, it's interesting to analyse the strengths and weaknesses of two EVs that both achieve the holy grail of plug-in vehicles, 500 km range on a single charge.

Following Sunswift eVe's World Record run in July, Wired magazine hailed the student-run university project as being Tesla's new competitor, ahead of the likes of BMW or General Motors. Hyperbole? Perhaps as eVe is not a road registered vehicle let alone production ready. But that doesn't detract from the fact that during the world record run, Sunswift eVe achieved 500 km range at highway speeds of 107 km/h (66 mph), without solar array assistance, using a battery pack made of the exact same Panasonic cells used by Tesla but with 1/5 th the capacity of the Model S.

When you take into consideration that much of the Model S design, from the large wheelbase to the all Aluminium body construction, is dictated by the 500 km range goal and the size and weight of the battery pack required to achieve that, any vehicle that achieves energy efficiency sufficient to reduce the 18650 battery cell count from 7,104 to 1,200 must offer some advantages.

Number one on the list is direct drive in-wheel motors. Sunswift eVe is RWD and powered by 2x 1.8 Kw (10 Kw Peak) Australian developed direct drive CSIRO wheel motors, that give eVe a top speed of 140 km/h. These axial flux BLDC wheel motors are 98.3% energy efficient and because they are inside the wheel with the rotor turning at the same RPM as the tire, there is no mechanical transmission gearing losses which typically range from 20-30%.

Sure, rated power of only 1.8 kw is barely enough to run a 4 slice toaster but the driving experience proved that 20 kw peak (27 horsepower) provides enough performance to accelerate and maintain highway speeds with minimal fuss. Each wheel motor weighs in at only 15 kg with the 99.2% efficient motor inverters adding less than 1 kg each to over-all powertrain weight.

Next up is aero efficiency. Because the car was deigned for a 3,000 km race with a high average speed on extremely limited solar power, aerodynamic efficiency is king. Sunswift eVe has a 1800 x 4500 mm footprint (larger than a Tesla Roadster). Although the car has twice the frontal area of its blade-like solar car predecessor, Sunswift has achieved a similar drag coefficient. It’s managed this partly through a unique high-set “tunnel” underside design, giving the car the look of a catamaran.

Where the Tesla Model S has the lowest drag coefficient of any production vehicle of 0.24, Sunswift eVe, designed exclusively using Computational fluid dynamics (CFD), achieves a Cd of 0.16. During my test drive of eVe, even though the vehicle had both doors removed for easy access, the lack of aero drag was noticeable while coasting. One team member told me it takes eVe several kilometers to coast to a stop from 100 km/h.

While Tesla claimed that every panel on the Roadster was carbon fibre, UNSW has taken that a step further and fabricated the entire chassis from the material. Manufactured through a sponsorship deal with New Zealand firm Core Builders Composites, the company that build much of the America's Cup fleet, the vehicle has a kurb weigh of just 320 kg. A Tesla Model S weighs 2100 kg.

The main benefit of light weight is reduced rolling resistance. Approximately 5–15% of the fuel consumed by a typical car may be used to overcome rolling resistance. Michelin special order low rolling resistance tyres are used which are run at 80 psi. While not exactly the same kind of road car tires as the 285/30 R21 used on the rear of a P85+, they are possibly not too far removed from the bicycle like 155/70 R19 tires fitted to the BMW i3.

The combination of electrical energy efficiency, low aero drag and rolling resistance means a 16 kWh battery made from 1200x Panasonic NCR18650 cylindrical Lithium Ion cells with a weight of only 63 Kg is enough to give eVe a single charge highway speed cruising range of over 500 km. That's the same battery capacity as a Mitsubishi iMiEV which has a maximum range of 155 km.

Although carbon fiber is roughly 20 times more expensive than steel, BMW have invested €400 million to launch the first carbon fibre reinforced plastic (CFRP) production car, the all electric i3. BMW’s goal is to get the expense of a carbon-fiber frame down to the level of aluminium by 2020. While only the passenger cabin of the i3 is made from carbon fiber with the drive train, battery and suspension attached to an aluminium chassis, it seems only a mater of time before 100% CF chassis like eVe become economically viable for mass produced road cars.

The next challenge for the Sunswift team is to make the eVe the first road-legal solar-powered car in Australia. They expect it to meet Australian road registration requirements within as little as one year.