
BMW and SCHERM Group launch 40-ton electric truck pilot project
The BMW Group is partnering with logistics company SCHERM Group to deploy a 40-ton pure-electric truck in the city this summer and become the first automobile manufacturer in Germany to use an electric truck of this size to transport materials on public roads.
The innovative traction vehicle, which is licensed for use on public roads, will be deployed as of this summer for just-in-time material transport over short distances. The electric truck will drive between the logistics company SCHERM Group and the BMW Group Plant Munich eight times a day, covering a distance of almost two kilometres one-way. Thanks to its alternative drive train, the truck is quiet, CO2-free in traffic and generates virtually no particle pollution for the environment. This is also reflected in the vehicle’s overall assessment in comparison with a truck with diesel engine: The environmentally friendly truck will generate 11.8 tons less CO2 per year – equivalent to a BMW 320d Efficient Dynamics driving almost three times around the world.
“Just under two years ago, our BMW i brand put sustainable mobility on the road. This pure electric truck signals that we are constantly working on innovative solutions and tackling logistics challenges,” says Hermann Bohrer, director of BMW Group Plant Munich. “We are therefore delighted with the cooperation with SCHERM.”
The BMW Group and SCHERM Group are investing a six-figure amount in the pilot project, which will initially span one year. If the vehicle proves itself in everyday driving conditions, both partners will seek to expand the project.
“After a long search, we have found an electro-mobility solution for the transport sector,” explains Rainer Zoellner, “e-truck” project manager at SCHERM Group. “We are certain to gain valuable experience with the BMW Group from this pilot project.”
The BMW Group pursues a holistic approach focused on implementing sustainability throughout the value chain. In addition to future-oriented mobility solutions, issues such as corporate environmental protection, efficient use of resources and reduction of CO2 emissions are firmly rooted in company strategy. Since 2014, the BMW Group has sourced more than half its global electricity needs from renewables.
SCHERM Group is an international systems provider offering solutions for the logistics, transport, real estate and service sectors. As a provider of services for the entire value chain, the company employs a workforce of around 2,000 employees at 14 locations and on a mobile basis in around 500 company-owned trucks. Sustainability is an important factor the company has defined as a fundamental value.
Volkswagen premiere the Golf GTE Sport: Plug-in hybrid sports car
VW presented the Golf GTE Sport in a world premiere at the legendary GTI event at Lake Wörthersee on 14 May 2015, Volkswagen is catapulting the GT tradition into the future. The high-tech Golf that is largely made of carbon is powered by a total of three motors – combined in a plug-in hybrid drive with system power of 295 kW / 400 PS. The concept car breaks down traditional barriers between road and motorsport vehicles. Its progressive hybrid system in combination with the high-tech all-wheel drive, a lightweight body, optimum aerodynamic downforce, precision running gear based on the design of the current Golf GTE, a new motor racing cockpit (including visualisation of the racing line) and an unusual seating concept (two monocoque-like interior areas) enable breathtaking performance on the racetrack. At the press of a button, however, the concept car is able to cover a distance of up to 50 kilometres on electric power alone and hence with zero emissions.
Drive system from motorsport and research
World Rally Car TSI engine. The 1.6 litre TSI (turbocharged direct-injection engine) adapted from the superb Polo R WRC (World Rally Car) is accommodated in the engine compartment at the front of the car. It delivers 220 kW / 299 PS and maximum torque of 400 Nm. Volkswagen has already won the World Rally Championship twice with this engine. In the Golf GTE Sport the four-cylinder masterpiece is assisted by two electric motors. The engineers positioned the first electric motor at the front (in the housing of the 6-speed dual-clutch gearbox). It develops 85 kW / 115 PS and maximum torque of 330 Nm. The second electric motor is located at the rear with the same power output but torque of 270 Nm. The total torque of the drive system is 670 Nm. Whenever possible, the concept car is powered solely by electricity without producing any emissions. In sporty "GTE mode" all three motors work together, giving the all-wheel-drive Golf GTE Sport a standstill to 100 km/h time of 4.3 seconds and a top speed of 280 km/h. In the NEDC cycle for plug-in hybrid vehicles the sports car consumes just 2.0 l/100 km/h.
Pure-bred sports car.
Balanced for the Nürburgring north loop. The concept of the Golf GTE Sport has been designed so that the car is at home in both normal road traffic and racetrack conditions. Accordingly, the drive, suspension, body and interior all follow the principle of a pure-bred sports car. The drive system offers maximum agility, the suspension displays maximum neutrality in interaction with the all-wheel drive, the carbon body is lightweight and with its balanced aerodynamics it virtually adheres to the road. The driver ergonomics bridge the gap to motor racing, and with optimum weight distribution and a low centre of gravity the overall package ensures that a lap around racetracks such as the north loop of the Nürburgring is a unique driving experience.
Interior rings in a new sports car era
Two-seater race car. The driver and passenger board the two-seater interior of the Golf GTE Sport through doors that swing right up in the style of the XL 1. The doors extend a long way up into the roof and down into the side sills, resulting in convenient boarding when they are opened upwards. The interior in carbon and microfibre consists of two completely separate areas for the driver and passenger. Like in motorsport vehicles, they sit quite a long way to the back on racing bucket seats with five-point belts. Accordingly, the steering column that is entirely clad in carbon projects a long way into the interior where it appears to float – a further characteristic feature of a rally car or touring-car racer. The functional elements are operated via controllers and buttons in the cocoon-like interior trim. The gearbox of the Golf GTE Sport can also be operated manually with shift paddles on the motorsport steering wheel.
Instruments on three levels. The instruments featuring a completely new design have been specially coordinated for the configuration of the driver's workspace. The Volkswagen interface designers opted for three transparent displays arranged behind one another on which all relevant information is displayed. On the smallest display at the front (closest to the driver) information such as the selected gear and the recuperation status is displayed; information that is only sporadically checked from the corner of the eye whilst driving. The centre display has secondary yet more complex information such as the power currently delivered by the drive (power meter) and the boost intensity of the plug-in system (electric boost). Information such as the current speed and the range are constantly in the driver's field of vision on the third and largest display. In addition, in "GTE mode" not only is the current lap displayed (e.g. 9 of 16), but there is also a virtual indicator of the ideal driving line – valuable assistance for safe and fast driving on complex racetracks such as the aforementioned Nürburgring north loop.
Ergonomic perfection. The clearly arranged multifunction switch for starting and stopping the hybrid drive and controlling the 6-speed DSG is ideally positioned to the right of the driver for easy access. Right next to it there is a control panel for further vehicle functions; these include a button for activating a fire extinguishing system similar to that used in motorsport. Furthermore, the passenger is also supplied with data via a display in his interior segment. In "Info Mode" the current speed, the gear currently engaged and the engine speed can be displayed. If the passenger switches to "Data Mode" he can call up the vehicle acceleration and lateral force figures (g- forces). It is not only the use of carbon, but rather a general lightweight design that saves weight in the interior. For example, the loops for opening the doors are made of the same synthetic fibre as the five-point belts. Moreover, extremely elaborate ergonomics prevail in every detail. The operating mode switch for selecting "E- Mode", "GTE-Mode" or "Hybrid-Mode", for example, is situated in the roof, like in a jet plane.
Body design and concept
Extremely lightweight. The body of the Golf GTE Sport is largely made of lightweight carbon. As both a brand and a group, Volkswagen is a trailblazer in the industrial use of this material. For example, like the exterior of the Bugatti Veyron 16.4, the body of the Volkswagen XL1 is also made of carbon. The high-strength carbon body of the Golf GTE Sport therefore weighs much less than a comparable steel body.
Side profile. The design concept of the Golf GTE Sport manifests itself in the car's striking silhouette. Here, Volkswagen is continuing the idea of C-pillars with a two-level design originating from the 2007 Golf GTI W12-650, which has been constantly further perfected in various concept cars. On the Golf GTE Sport that is now being presented, this C-pillar concept, which is unique worldwide, has reached a degree of perfection that allows it to leave the show car stage and – as a design vision – bridge the gap to the Golf GT models of the future. The basic styling of these pillars (like the string of a bow taut with an arrow) follows the unmistakable Golf design, but at the same time feature some completely new C-pillar details: behind the level visible from outside a second one opens up. The airstream flows between these two levels and is contributing to the aerodynamic downforce and to the cooling of the rear brake system. Stylistically, this concept means that the rear section (like the front section) is extremely wide. By contrast, the passenger cell between the A-pillar and the interior part of the C-pillar becomes narrower when viewed from the front to the rear – an avant-garde interplay of extremely powerful shapes.
Doors and sills fold upwards. As described, the concept car painted in pearlescent "White Club" has two gullwing doors that swing forwards. The upper part that extends a long way into the roof is entirely made of dark visible carbon. A large part of the side sill is integrated in the door cutout. The three-dimensional body of the sill is enhanced at the top in the door section with an area in dark visible carbon. Further features on the side profile in visible carbon are the door mirror caps, the door window frames and the lower sill area. This part of the sill is designed as a splitter, i.e. a thin and sharp aerodynamic element, a feature familiar in motorsport. The side sill is framed by the new 20-inch alloy wheels fitted with tyres in format 235 at the front and 275 at the rear.
Front. With the front section of the Golf GTE Sport the Volkswagen design team is impressively illustrating how the Golf GT models could develop in future. On the concept car, the designers removed the striking blue radiator grille line of the Golf GTE production model from the grille and positioned it below the bonnet as a blue crossbar running across the whole width of the front. Below it, three further crossbars in black chrome look extend across the centre air inlet. The high-gloss black air inlet grille itself has the honeycomb structure typical of GT models. A further air inlet below the crossbars is framed at the top and to the sides by a striking aerodynamic element (also made of carbon). A double spoiler, also designed as a splitter, rounds off the front. Here, too, carbon is used.
LED headlights and daytime running lights. All electric and plug- in hybrid models from Volkswagen have C-shaped LED daytime running lights as a distinctive feature, and the Golf GTE Sport is no exception. Here, they frame the whole radiator grille unit at the sides, and in the top area there is an almost seamless transition from the LED daytime running lights to the extremely narrow and sharp LED headlights.
Rear. Never before has Volkswagen realised such a charismatic and sporty rear for a Golf. Here, too, the two levels of the C-pillars are a defining stylistic feature giving the Golf GTE Sport a very wide and powerful appearance from the rear. The extended outer levels of the C-pillars at the rear – like the tail unit of an aeroplane – elongate the car together with the large roof spoiler. Typically Golf: the striking tailgate with a vertical downward angle at the level of the redesigned LED rear lights. At the top, the tailgate is limited by a black carbon roof spoiler – a wing that seems to hover in front of the tailgate at a distance of a few millimetres to the roof. The C-pillars that taper at an angle to the rear and the bumper merge into one another, with the latter projecting far above the line of the tailgate. As an imaginary continuation of the side strip made of visible carbon (above the sill), the top edge of the bumper also features visible carbon. Below this is an area painted in the body colour (with air outlets on the outside). The last level is a large diffuser made of visible carbon with the splitter that is also continued here. The round stainless steel trims of the twin-pipe exhaust system are integrated in the middle of the diffuser.
Drive – plug-in hybrid and electric propshaft
E-Mode – setting off on electric power. No Golf has ever had three motors before. But this one does. As described at the beginning, the combustion engine fitted by Volkswagen is a turbocharged 1.6-litre four-cylinder direct-injection engine (TSI) that produces 220 kW / 299 PS of power and a maximum torque of 400 Nm. The electric components consist of the lithium-ion battery and two electric motors. The front electric motor is integrated in the housing of the 6- speed DSG (DQ400E). Both electric motors have a power output of 85 kW. The total available system power is 295 kW / 400 PS. If necessary, the system drive power can be distributed to all four wheels thanks to the rear electric motor and an "electric propshaft". In normal operation the Golf GTE Sport drives just as quietly as the production Golf GTE that is already marketed. In "E-Mode" it is setting off purely electrically. In this case the concept car uses the battery that can be charged externally (but also whilst driving) to cruise without producing any emissions. It can cover up to 50 kilometres on a battery charge. When a defined minimum battery charge is reached, the 1.6 TSI is automatically switched on and the Golf GTE Sport drives in "Hybrid" mode. As soon as the battery reaches a certain charge level again, "E-Mode" can be reactivated at any time via a switch in the overhead console. In "E-Mode", the rear axle electric motor is first and foremost responsible for propulsion. When high demands are made on performance, the front electric motor is also activated to provide support.
Hybrid mode – silent coasting. As soon as the drive system or the driver deactivates "E-Mode", the Golf GTE Sport becomes a classic full hybrid with regenerative braking charging the battery and automatic utilisation of the right combination of TSI and/or electric motors according to the specific drive situation. When the driver releases the accelerator pedal, and the battery is sufficiently charged, all drive sources are shut off. This is referred to as "coasting". If the driver releases the accelerator pedal or brakes, and the battery is insufficiently charged, the two electric motors operate as generators and charge the lithium-ion battery with the energy recovered from braking. With the dual mode "Battery Hold" or "Battery Charge" the battery's energy content can be deliberately kept constant by the driver ("Hold") or increased ("Charge"). When the 1.6 TSI engine is the sole source of propulsion, the concept car is a pure front-wheel drive car.
GTE-Mode – the power of three hearts. The switch on board the Golf GTE Sport that is most important for dynamic performance is located in the overhead console. It bears the letters "GTE". When the driver operates this switch, the character of the Golf GTE Sport's drivetrain changes drastically in an instant because now the full system power of 400 PS is available. The turbocharged 299 PS petrol engine alone delivers immense propulsive power, and at this high level the electric drive components of the Golf GTE Sport assume an additional boost function. The boost effect is so strong that the drive unit would also perform well if used in professional touring car races: the Golf GTE Sport sprints to 50 km/h in 1.8 seconds, reaches 100 km/h in 4.3 seconds, and the maximum speed permitted in Austria, i.e. 130 km/h, in 6.5 seconds. On German motorways, the concept car reaches 200 km/h in 15.9 seconds. In "GTE-Mode" all four wheels of the Golf are driven.
All-wheel drive – "electric propshaft". In "GTE-Mode" and as soon as the situation necessitates it, the drive power of the Golf GTE Sport is distributed to both axles. In this case (and if battery charge is low), the front electric motor – which is now being supplied with kinetic energy via the TSI – acts solely as a generator and a source of electricity for its counterpart at the rear axle. Since the energy for driving the rear axle flows by wire and not mechanically here, this is referred to as an "electric propshaft". Because the TSI drives the rear electric motor via the front electric motor, the all-wheel drive system also operates when the battery's charge state is low – an invaluable advantage in terms of driving dynamics. The importance of the implementation of the "electric propshaft" for Volkswagen with regard to series production is demonstrated by the fact that the company has had the German equivalent of this designation protected under copyright law.
Electric ‘Hypercar’ Packs 1,300 Horsepower
Fully Charged BMW i8 Test Drive [VIDEO]
Losses Widen at Tesla, but Company Says Production Is on Track
10x motor electric VTOL aircraft prototype takes off [VIDEO]
A team at NASA's Langley Research Center is developing a concept of a battery-powered plane that has 10 motors and can take off like a helicopter and fly efficiently like an aircraft.
The prototype, called Greased Lightning or GL-10, is currently in the design and testing phase. The initial thought was to develop a 20-foot wingspan (6.1 meters) aircraft powered by hybrid diesel/electric engines, but the team started with smaller versions for testing, built by rapid prototyping.
This research has helped lead to NASA Aeronautics Research Mission Directorate efforts to better understand the potential of electric propulsion across all types, sizes and missions for aviation.
More: PHYS.org
What You Need to Know About LMP1 Hybrids Leading up to Le Mans [VIDEO]
The hybridised World Endurance Championship has introduced a new version of cut and thrust racing that is very entertaining to watch but I'm not sure either Jalopnik nor the (with respect) race commentators fully understand how the very different hybrid systems interact on the track.
The video sequence features a race for position between the Audi R18 E-Tron Quattro and the Porsche 919 Hybrid. While these cars are both in the same LMP1 hybrid class, the rules allow for a large amount of technical freedom (especially when compared to many other 'control formula' International championships).
The 2015 Audi R18 features a 558 HP (410 kW) 4.0-liter Turbo Diesel V6 combustion engine driving the rear wheels with a 272 HP (200 kW) electric motor driving the front wheels. The R18 is in the 4 Megajule class with a flywheel energy storage system can store 700 kilojoules.
The Porsche 919 Hybrid features a 500 Hp (370 kW) 2.0-liter Turbo Petrol V4 combustion engine driving the rear wheels with a 400 HP (300 kW) electric motor driving the front wheels. The 919 is in the 8 Megajule class with an A123 Lithium-ion battery energy storage system and also has thermodynamic energy recuperation using the energy from exhaust gases from the turbo charger.
The energy class regulations refer to the amount of regenerated energy that can be used each lap, for example 8 megajoules equals 2.2 kWh that can be deployed around the race track (3.6 megajoules is equivalent to 1 kilowatt hour (kWh).
Like in Formula One, the energy recuperation is pre-programmed and not directly controlled by the drivers, what might be confusing is that unlike in F1 where output from the KERS systems is driver controlled via a steering wheel mounted 'boost' button, in the WEC the KERS output is also pre-programmed. In fact KERS 'boost' buttons are banned in the WEC.
The FIA specify hybrid ‘braking zones’ where teams can program energy recovery. The hybrid output can be used anywhere around the track and is calculated by race engineers pre-race to maximise the use of this energy for fastest laps times with minimal fuel burn. As a result, what we're seeing in the video above where the Porsche 919 is said to be "running out of hybrid power" is in fact the same pre-programmed energy duty cycle used by the 919 on every laps of the race. This becomes very clear watching extended in-car race footage (the FIA WEC on-line package offers full race in-car access to all works LMP1 cars). What we see as the Porsche massively out accelerates the Audi at the top of Eau Rouge is a combination of the 919 having a 60 kW advantage over the Audi and where the Porsche is pre-programmed to apply it's 4Mj of additional hybrid power. Again, the 919 drives this duty cycle every lap.
There are other very interesting differences at play such as braking performance. Where the Audi (flywheel) and Toyota (super capacitor) systems can recover a 'full charge' during high speed braking, while the Porsche (li-ion battery) has a noticeable extended high speed braking profile, e.g the 919 starts braking a longer distance before the corner, and is belived to take several braking zones to recover a 'full charge'. This is due to the asymmetric charge and discharge curves of lithium ion batteries and is partially compensated for by the thermodynamic turbo generator which makes the Porsche 919 Hybrid the only car in the field that recuperates energy not only when it brakes but also when it accelerates.
Motorsport is a technical sport and this is exactly what racing is meant to be about, advancing automotive technology.
Aston Martin DBX SUV to go into production in 2019
Aston Martin has announced a production version of the all electric DBX SUV concept will enter production and be on sale by 2019.
In a statement issued last night, Aston’s boss Andy Palmer announced his company had raised the £200m from its two majority shareholders to begin work on creating a production version of last month’s Geneva motor show concept.
“The additional investment announced today will allow us to realise the DBX and other new luxury vehicles that will form the strongest and most diverse portfolio in our history”. Said the Aston CEO.
The DBX Concept is an all-wheel drive crossover high luxury GT that uses in-board electric wheel motors at all four corners powered by lithium sulphur cells. Steering is a drive-by-wire system and both the driver and passenger have head-up displays surrounded by auto-dimming ‘smart glass’.
Infiniti’s Vision GT Hybrid concept [VIDEO]
Looking virtually identical to the digital model created for Gran Turismo 6, the real world Vision GT concept provides a glimpse at what a "high performance Infiniti could look like in the future.”
While the company didn't have much to say about the car, it has a naturally aspirated 4.5-litre V8 petrol-electric hybrid system powering the rear wheels and features an aggressive front fascia with a prominent grille that is flanked by slender headlights and sporty air intakes. Moving further back, there's sporty side skirts, carbon fiber trim and massive alloy wheels.
According to the game maker’s, the Infiniti Concept Vision Gran Turismo’s electric motor delivers “overwhelming torque” in low-speed situations while at higher speeds, the V8 engine teams “immense power”