Drive e0 PP03 Becomes First Electric Car to Qualify P1 @ Pikes Peak

The Drive e0 PP03 one megawatt AWD battery electric racer driven by Kiwi Rhys Millen has become the first electric vehicle to qualify P1 overall at the 93rd running of the Pikes Peak International Hill Climb.

The 2015 event could go in history as the first outright win by a battery electric race car.

With Mitsubishi's EV works team, who funished 2nd and 3rd outright in 2014, absent for this years race, the competition is between two Megawatt class EV teams. Multiple champion Nobuhiro Tajima has teamed up with Rimac Automobili to build a 1.1 MW AWD racer while Rhys Millen drives for Latvian team Drive e0 with the 1 MW AWD special.

Racing starts @ 8 AM MDT (Mountain Daylight Time - GMT -6 Hrs) Sunday 28th June.

Chevy Bolt testing confirms 320 km range target [VIDEO]

General Motors engineers say early testing of its upcoming Chevrolet Bolt EV is affirming their estimates that the car will have a range of 320 km (200 miles) between charges.

The automaker has produced 55 prototypes of the all-electric vehicle at plants in Seoul, South Korea, and Orion Township. They have been driven hard throughout GM's Milford Proving Grounds and early results are positive, engineers say.

"We have experienced 200 miles. We're pretty confident in that," said Pam Fletcher, GM executive chief engineer for electrified vehicles. "You can imagine we're going to eke out every mile of range we can."

Chevy unveiled the Bolt (that’s “Bolt” with a “B,” not to be confused with the existing plug-in hybrid Chevy Volt) concept at the Detroit Auto Show back in January, the hand-built prototypes have been testing since April. Vowing a 320 km (200-mile) range and a price tag of $30,000 after incentives, the Bolt is expected to enter production sometime in 2017.

Pam Fletcher, the chief executive engineer for electric vehicles at General Motors, also emphasized on Wednesday that GM’s electrification technology and manufacturing is U.S.-based. “Chevrolet’s electrification technology is very much grounded here in the U.S.,” Fletcher said in a video posted on GM’s site. She mentioned that the battery packs and electric drive units for the Volt are manufactured in Michigan and the electric motors are made in the U.S. “It’s a really a terrific story for technology and manufacturing and electrification in this country,” she said.

Chevrolet has committed to pricing the Bolt at about $30,000 after the $7,500 tax credit.

TNT Introduce Electric Delivery Vans In The Netherlands

TNT is deploying seven new 3.5 tonne electric express delivery vehicles for its operations in and around Amsterdam and Rotterdam, The Netherlands, as a partner of FREVUE (Freight Electric Vehicles in Urban Europe), an urban e-mobility project supported by the European Commission. FREVUE seeks to demonstrate to industry, consumers and policy makers how electric vehicles can meet the growing need for sustainable urban logistics.

TNT’s new e-Ducato vehicles purchased from BD Auto replace the standard diesel vehicles previously operating in Rotterdam and Amsterdam and will enable to save 24,000 litres of diesel and 76 tonnes of CO2 equivalent emissions each year. They provide a range of 200 km and a loading volume of 13m3.

Erik Uljee, Managing Director, TNT Benelux, said: “The partnership with FREVUE is part of TNT’s corporate responsibility agenda and meets the objective of our Outlook strategy to increase efficiency and productivity. To support zero emission transport in city centres, the authorities extend certain privileges to TNT such as exemptions from parking bans and access to closed areas outside loading and unloading times. With the three vehicles in Rotterdam and four in Amsterdam, TNT’s electric fleet in the Netherlands is nine in total.”

Pex Langenberg, Vice Mayor of the City of Rotterdam, said: “It is the ambition of the City of Rotterdam to have a zero emission freight transport in the inner city by 2020. This is formalised in the Green Deal Zero Emission. We welcome the new electric freight vehicles as they will help to make the air in the city centre cleaner and decrease noise pollution.”

The city of Amsterdam welcomes the emission-free TNT trucks in line with its plans to step up improvements in sustainability as outlined in the Sustainability Agenda Amsterdam. Amsterdam is dedicated to remaining the frontrunner in electric transport and wants to be the zero emission city in 2025. Within the city, all the transport – including public transport and taxis – must preferably be zero emission by then.

By 2020 all BMW’s will be AWD range-extender electric cars

BMW have embarked on a radical engineering overhaul which could see all future models from the 3-series upwards, including the Rolls-Royce range, become all-wheel-drive range-extender electric cars.

The days of spot-welded steel bodies and engines that drive the rear wheels via conventional transmissions are set to be consigned to history. BMW’s plan to make all of its cars from the 3-series upwards plug-in hybrids has forced the company’s engineers to rethink the make-up of its cars from first principles.

The first move is to radically reduce the weight of future bodyshells to help offset the extra weight of battery packs. Work on BMW’s bodyshell of the future is already well advanced, and the first generation of the mixed-materials structure will be seen this coming summer, underpinning the next-generation 7-series.

It is expected to take another generation of the 3-series, expected in 2018, before BMW is ready to switch its mainstream car to this kind of carbonfibre-intensive construction. That’s partly because it will take some years to reduce the cost of this kind of construction.

The next phase in BMW's reengineering is a rethink of the powertrain. The final concept — demonstrated in Nov 2014 with a 500 kw AWD 5-series GT xDrive plug-in hybrid — is similar in basic principle to the series hybrid system that propels the Chevrolet Volt.

Where the Chevy Volt has an ICE powered generator/motor + a traction motor in a single front-wheel-drive transverse gearbox assembly, BMW will retain it's famous rear-wheel-drive bias by splitting that combination and putting the main traction motor on the rear axle while the front axle can still be driven by the ICE powered motor/generator. This also means that on-demand four-wheel drive will be available on all future BMWs.

As seen in the BMW i8, a large battery will occupy the centre tunnel and some of the space usually occupied by the fuel tank. The front-mounted engine acts as a generator in most driving situations, creating electricity to help drive the electric motors.

The front electric motor is key to the new powertrain

In normal use, the front electric motor drives the front wheels via a still-secret new type of transmission. At speeds above 80 km/h or so, the engine ‘assists’ the electric motor by attaching itself to the new transmission via a mechanical planetary system to help drive the front wheels at motorway speeds in parallel mode much like a Chevy Volt or Mitsubishi Outlander PHEV. The combustion engine expected to be driving the front wheels only 10 per cent of the time on a typical journey.

BMW won’t reveal the details of this new combined electric motor and transmission system, but we speculate BMW, like Renault and Bugatti, may be considering a disc-shaped Axial Flux electric motor mounted within the gearbox housing.

The new transmission is unlikely to have more than three ratios and could be a mechanical planetary system. It is likely to be less expensive than today’s eight and nine-speed autos and dual-clutch transmissions.

Because the new-generation engine runs as a lean-burn generator for 90 per cent of the time and the twin electric motors provide significant torque, demands on the engine are much reduced. So it probably doesn’t need a turbocharger, the accompanying intercooler system or the Valvetronic system.

The emissions control system should also be less complex and expensive, all of which greatly reduces the cost of the unit. The engine is likely to be significantly lighter, too.

The battery pack can be larger. It will fit neatly in space freed up by the removal of the propshaft and the use of a smaller fuel tank. Braking assistance from electric motors means the mechanical brakes can be smaller, lighter and cheaper.

The multi-material bodyshell will be at least 100kg lighter than that of today’s 3-series, partly offsetting the battery’s weight.

This new hybrid powertrain offers part-time and permanent all-wheel drive and can be scaled across all models. So although the new, simplified generator motors might come in different sizes and capacities — and the battery pack will come in different sizes — this powertrain can largely be shared between everything from a 3-series to an X5 to a Rolls-Royce Phantom. This will save BMW a huge amount of money in production and research and development costs.

BMW is rumoured to already be testing a four-seater with some of the above technology. Weighing less than 1,200 kg with a drag co-efficient of 0.18, the BMW prototype consumes only 0.4 liters per 100 kilometers or 706 miles per imperial gallon (588 miles per US gallon).

Source: Autocar

BMW Wants to Put an EV Charging Station In Every Street Light

BMW's MINI Plant in Oxford UK is showcasing a high-efficiency street lighting system that doubles as a charging station for electric vehicles (EVs) during the city’s second Low Carbon Oxford Week.

Known as Light & Charge and demonstrated for the first time in the UK, this innovative system is the outcome of a pilot project developed by the BMW Group and is a state-of-the-art LED street light that combines energy-efficient lighting with affordable EV charging.

Allowing cities to significantly reduce energy consumption, its integrated charge point also provides a cost-effective and simple solution which can be grafted straight onto the existing local authority street lighting infrastructure, substantially increasing the number of public charging stations. EV charging stations can be set up at any location where suitable parking is available, simply by replacing conventional street lights with Light & Charge systems.

“Light & Charge is a simple and innovative solution which aims to integrate a charging station network into the urban landscape and this is essential if we want to see more electric vehicles on the road in our cities in the future. I’m delighted that the MINI plant is the first location in the UK to showcase BMW Group’s technological expertise not only in developing electric vehicles but also as part of a much wider commitment to electric mobility,” said Frank Bachmann, Managing Director, MINI Plant Oxford.

Oxfordshire County Council and Oxford City Council are currently working in partnership to increase the uptake of ultra-low emission vehicles such as electric cars as part of their bid for funding from the Office of Low Emission Vehicles, Go Ultra Low City Scheme.

Commenting on the new innovation, representatives from Oxfordshire County Council and Oxford City Council said: “We’re pleased that we have the opportunity to take a look at this innovative new technology as part of Low Carbon Oxford week. Combining energy-efficient street lighting with a re-charging station for electric vehicles is a neat solution to the problems of on-street charging stations.”

With its modular LED design, the Light & Charge street light is much more energy-efficient than conventional street lighting and provides more effective illumination. It can be installed anywhere and its modular design can to be tailored to different locations. Up to four LED modules can be used to provide night-time lighting on main roads, while one or two modules are sufficient to provide lighting on side streets and in residential areas. As is already the case with vehicle headlights, LED technology allows more targeted light distribution with highly uni­form illumination to increase road safety and is optimised for minimum glare and light pollution. Through intelligent control electronics, the street light can adjust itself to its environment and yields energy savings by enabling the reduction of light output late at night and whenever no one is around.

The EV charging cable connects to a standard connector on the Light & Charge street light and the integrated control panel allows drivers to start charging with the swipe of a card regardless of vehicle model.

Close-up: Audi R8 e-tron Powertrain [VIDEO]

340 kW of power, 0 to 100 km/h in 3.9 seconds and a driving range of up to 450 km

Visually, the 4.40 meter (14.4 ft) long Audi R8 e-tron is recognizable by its unique lighting solutions on the air inlets, front apron and sideblades. Its exterior skin, painted in Magnetic Blue, combines body parts made of aluminum and carbon fiber reinforced polymer (CFRP), such as the front and rear lids. Thanks to aerodynamic modifications to its cooling air inlet, rear spoiler, diffuser, underbody and sideblades, the drag coefficient (Cd) of the R8 e-tron is just 0.28. Its Audi Space Frame (ASF) is based on the multimaterial design of the V10 version, which is extended by a rear body module made of CFRP. Despite its low weight, the corrugated bulkheads that conceal the luggage compartment can absorb a lot of energy in a rear-end collision.

The T-shaped battery is structurally integrated in the middle tunnel and is mounted behind the occupant cell – this location offers a low center of gravity and an axle load distribution of 40:60 (front/rear). The high-voltage battery is based on lithium-ion technology. The liquid-cooled lithium-ion battery consists of 52 modules. Compared to the first e-tron technology platform, the energy capacity of the new 595 kg (1311.8 lb) battery system was boosted from around 48.6 kWh to 90.3 kWh without requiring any package modifications.

Thanks to the high energy density, which was increased from 84 to 152 Wh/kg, the R8 e-tron can be driven up to 450 km (279.6 mi) on just one battery charge – previously it was 215 km (133.6 mi). In the Combined Charging System (CCS) for charging with DC or AC electricity, the battery can be fully charged in well under two hours. The driver can control this process remotely by smartphone, if the user has installed the relevant Audi connect app.

920 Nm (678.6 lb-ft) of torque

The two electric motors on the rear axle each output 170 kW and 460 Nm (339.3 lb-ft) of torque. The R8 e-tron, which weighs just 1,841 kg (4058.7 lb) empty (without driver), sprints from 0 to 100 km/h (62.1 mph) in 3.9 seconds and can accelerate to an electronically governed top speed of 250 km/h (155.3 mph) while developing its unique e-sound. Targeted Torque Vectoring – a need-based distribution of drive power between the rear wheels – gives the car maximum stability and dynamism.

Intelligent energy management and an electromechanical brake system at the rear axle ensure high rates of energy recuperation. The suspension springs consist of glass fiber reinforced polymer (GFRP), and the anti-roll bar is made of CFRP.

The R8 e-tron rides on aerodynamically optimized, high-gloss 19-inch aero wheels that were specially developed for this car. At the front axle, size 225/40R19 tires enable precise steering response. Size 275/40R19 tires transfer the torque of the electric motors to the road. The tires were specially developed for the requirements of an electric supercar, and they combine sporty driving properties with efficient rolling resistance values. Extremely sporty 20-inch wheels of the production R8 are available via the Audi Genuine Accessories program.

In the finely crafted interior, the R8 e-tron offers illuminated door sill trims, folding bucket seats and a specially configured Audi virtual cockpit. A heat pump removes waste heat from electrical components for thermal management and for interior climate control – an important efficiency module of the overall concept.

Audi also uses the latest development stage of the R8 e-tron as a high-tech laboratory – it also continues to play an important role in developing electric mobility of the future. The R8 e-tron will be produced in the small-scale production facility of quattro GmbH at the Audi Neckarsulm site in the Böllinger Höfe.

450 km (279.6 mi) range on a fully charged battery

The new battery cells are primarily responsible for the new performance and driving range of the Audi R8 e-tron. Audi has systematically adapted its high-voltage battery system to the specific needs of electric cars – the primary focus was on achieving an optimal ratio between power and energy. The results: The R8 e-tron has a significantly longer driving range and even more power than the previous model. In developing the high-voltage battery, the brand with the four rings followed the principle of maximum flexibility without losing sight of synergies in electrification. Its flexible cell module concept makes the Audi brand well-equipped for all future market developments, while the modular concept also guarantees Group-wide use across different car models.

The battery operates with 385 volts of nominal voltage, and its new cell module concept achieves excellent performance. The battery’s energy density grew from 84 watt-hours per kilogram (Wh/kg) to 152 Wh/kg, and its nominal capacity from 48.6 kWh to 90.3 kWh. Its driving range on a full charge has more than doubled – from 215 km (133.6 mi) to as much as 450 km (279.6 mi). These values make Audi the leader among the competition.

The battery system of the Audi R8 e-tron takes on the shape of a “T”. It measures 235 cm (92.5 in) long, 136 cm (53.5 in) wide and 70 cm (27.6 in) high, including the junction box on the cross-bar of the “T”. This junction box is responsible for monitoring, switching and transmitting an electrical current of over 1,200 amperes. The highly complex battery system consists of over 10,000 individual parts.

The 7,488 cells are packed in 52 modules of 144 cells each. Each module weighs 7.8 kg (17.2 lb). They are arranged on two and five levels (“floors”) in the tunnel battery and in the rear battery. Aluminum plates separate the “floors” from one another while creating the supporting structure for the battery.

Coolant circulates in a cooling system of aluminum shells. In a crash, high-strength floor plates and impact plates redirect the crash forces into the multimaterial ASF (Audi Space Frame) of the R8 e-tron in a defined way.

40:60: axle load distribution

The 595 kg (1311.8 lb) battery system is joined to the ASF with bolts in the middle tunnel and behind the occupant cell, making it an integral part of the vehicle structure. Its mounting position results in a low center of gravity and an axle load distribution of 40:60 (front/rear), which is ideal for a mid-engine sports car.

The Combo 2 charging interface of the Combined Charging System in the Audi R8 e-tron enables charging with AC or DC electricity. When charging with AC from an industrial electrical outlet with 7.2 kW of charging power, a full charge is reached in just around 12 hours. Charging with DC electricity shortens the time – to just 95 minutes at a charging power of 50 kW. Audi is demonstrating charging equipment that can charge this battery system with up to 150 kW of charging power. For the driver of the R8 e-tron, this means that a driving range of around 150 km (93.2 mi) can be attained after just 15 minutes of charging time. The customer can manage charging remotely as well – using a smartphone on which the customer has installed the relevant Audi connect app.

Tesla rolls out destination charging in Australian hotels, malls

Tesla Motors has introduced its ‘destination charging’ program into Australia, with over 10 sites established. Model S owners who frequent longer trips will benefit from the destination charging program, where owners can charge at no cost.

Tesla destination charging program provides ‘high power wall units’ at key destinations for Model S owners to charge while away from home for long periods.

The wall units can provide as much as 40 amp of power to Model S and are also provided with Model S for home installation, making the device familiar to owners.

With up to 500 km of rated range, the majority of charging with Model S is done at the home, but now the destination charging will provide locations where there are longer or overnight stops.

Locations include key hotels such as Park Hyatt Sydney, The Darling, Hotel Realm Canberra, The Observatory in Port Macquarie and to fulfil the winter snow travelers Rundells Alpine Lodge Dinner Plain.

In addition, key shopping centres such as Westfield Chatswood and Chadstone have been utilised, with premium parking locations and wall units available to Model S owners.

Tesla Motors has also partnered with Secure Parking to enable a safe location for Model S owners to park and charge whilst at work or out in town. These locations are located across Brisbane, Sydney and Melbourne.

“This expanding network of destination charging is a great replication of the convenience our owners receive when charging at home. Along with the developing Supercharger network, our owners will be able to cover long distances with the knowledge they have a charging solution,” says Australian Tesla spokesperson, Heath Walker.