Bosch buys solid state battery start-up Seeo

German industrial conglomerate Bosch is acquiring Silicon Valley battery firm Seeo, including all of its intellectual property and research staff. With the move, Bosch is looking to enhance its offer to the electric car industry, which is witnessing a significant growth.

Founded in 2007, Seeo is known for its advancements in creating high-energy rechargeable lithium-ion batteries based on a nano-structured polymer electrolyte. Seeo uses solid state technology that avoids the use of flammable liquid electrolyte.

Using solid electrolyte, Seeo manufactures DryLyte batteries that deliver high energy density alongside impressive reliability and safety. Seeo has an exclusive license to core patents from Lawrence Berkeley National Laboratory and has more than 30 issued, exclusively licensed and pending patent applications.

News website Quartz reported that Bosch confirmed the acquisition. A Bosch spokeswoman told the website that the financial terms of the deal will not be released.

In December, Seeo made news as its CEO Hal Zarem announced plans to manufacture a battery with an energy density that is about double that of existing commercial lithium-ion batteries. The new battery would have a density of 300 watt hours per kg.

Bosch, which is already supplying a lot of components to the automobile industry, has long been looking to enter the advanced battery market. The acquisition may prove successful, as Seeo and its innovations are said to be of great potential.

Meanwhile, Seeo faces intense competition from start-ups such as Sakti3, QuantumScape, XG Sciences, Envia Systems and SolidEnergy Systems that are working on new types of electric car batteries. Panasonic is currently the leading player in the electric car battery market with a 39% market share, followed by LG Chem and Samsung SDI, according to research firm Lux Research.

Volkswagen e-Golf vs. BMW i3 REx [VIDEO]

Polish blogger Marek Wieruszewski reviews the Volkswagen e-Golf and the BMW i3 REx.

The Volkswagen e-Golf has a claimed range of up to 200 kilometres while the BMW i3 can squeeze up to around 160 kilometers, but it can be equipped with a petrol range-extender, which doubles its range.

Consumer Reports Tesla P85D Test Results [VIDEO]

Consumer Reports put the electric Model S P85D through the same tests other cars undergo at its track as part of its overall assessment of Tesla's performance sedan.

Watch the above video to see how it fared in three key tests, along with its fuel efficiency figure.

Audi e-tron quattro concept will be unveiled at IAA 2015 next month

The conceptual basis for a completely new all-electric Audi SUV with a potential range of more than 310 miles will be one of the stars of the IAA in Frankfurt next month. The Audi e-tron quattro concept profits from the expertise gained in the development of the forthcoming R8 e-tron, and the roadgoing model which it will help to spawn will be notable as the brand’s first large-series electric car when it enters production in 2018.

The Audi e-tron quattro concept is designed from the ground up as an electric car and proves to be pioneering in its segment at the very first glance. It follows the Audi “Aerosthetics” concept, combining technical measures for reducing aerodynamic drag with creative design solutions. Movable aerodynamic elements at the front, on the sides and at the rear improve the air flow around the car. The aerodynamically optimised underbody is completely closed. With a cd value of 0.25, the car sets a new record in the SUV segment. This contributes considerably to the long range of more than 500 kilometres (310 miles).

The study is based on the second-generation modular longitudinal platform, which provides considerable scope for the drive system and package. Its length is between that of the Audi Q5 and the Q7. Its typical SUV body and flat, coupé-like cabin give the Audi e-tron quattro concept a very dynamic appearance. The spacious interior offers room for four people.

The large lithium-ion battery is positioned between the axles and below the passenger compartment. This installation position provides for a low centre of gravity and a balanced axle load distribution, giving the car better driving dynamics and driving safety than other vehicles in the segment.

Audi uses its experience with the electrically driven Audi R8 e-tron sports car for the drive system. Three electric motors – one on the front axle and two on the rear – effectively create an ‘electrified quattro’, making the e-tron quattro concept both highly efficient and responsive.

Going solid-state could make batteries safer and longer-lasting

New research paves the way for rechargeable batteries with almost indefinite lifetimes, researchers say.

If you pry open one of today’s ubiquitous high-tech devices — whether a cellphone, a laptop, or an electric car — you’ll find that batteries take up most of the space inside. Indeed, the recent evolution of batteries has made it possible to pack ample power in small places.

But people still always want their devices to last even longer, or go further on a charge, so researchers work night and day to boost the power a given size battery can hold. Rare, but widely publicized, incidents of overheating or combustion in lithium-ion batteries have also highlighted the importance of safety in battery technology.

Now researchers at MIT and Samsung, and in California and Maryland, have developed a new approach to one of the three basic components of batteries, the electrolyte. The new findings are based on the idea that a solid electrolyte, rather than the liquid used in today’s most common rechargeables, could greatly improve both device lifetime and safety — while providing a significant boost in the amount of power stored in a given space.

The results are reported in the journal Nature Materials in a paper by MIT postdoc Yan Wang, visiting professor of materials science and engineering Gerbrand Ceder, and five others. They describe a new approach to the development of solid-state electrolytes that could simultaneously address the greatest challenges associated with improving lithium-ion batteries, the technology now used in everything from cellphones to electric cars.

The electrolyte in such batteries — typically a liquid organic solvent whose function is to transport charged particles from one of a battery’s two electrodes to the other during charging and discharging — has been responsible for the overheating and fires that, for example, resulted in a temporary grounding of all of Boeing’s 787 Dreamliner jets, Ceder explains. Others have attempted to find a solid replacement for the liquid electrolyte, but this group is the first to show that this can be done in a formulation that fully meets the needs of battery applications.

Solid-state electrolytes could be “a real game-changer,” Ceder says, creating “almost a perfect battery, solving most of the remaining issues” in battery lifetime, safety, and cost.

Costs have already been coming down steadily, he says. But as for safety, replacing the electrolyte would be the key, Ceder adds: “All of the fires you’ve seen, with Boeing, Tesla, and others, they are all electrolyte fires. The lithium itself is not flammable in the state it’s in in these batteries. [With a solid electrolyte] there’s no safety problem — you could throw it against the wall, drive a nail through it — there’s nothing there to burn.”

The proposed solid electrolyte also holds other advantages, he says: “With a solid-state electrolyte, there’s virtually no degradation reactions left” — meaning such batteries could last through “hundreds of thousands of cycles.”

The key to making this feasible, Ceder says, was finding solid materials that could conduct ions fast enough to be useful in a battery. “There was a view that solids cannot conduct fast enough,” he says. “That paradigm has been overthrown.”

The research team was able to analyze the factors that make for efficient ion conduction in solids, and home in on compounds that showed the right characteristics. The initial findings focused on a class of materials known as superionic lithium-ion conductors, which are compounds of lithium, germanium, phosphorus, and sulfur, but the principles derived from this research could lead to even more effective materials, the team says.

The research that led to a workable solid-state electrolyte was part of an ongoing partnership with the Korean electronics company Samsung, through the Samsung Advanced Institute of Technology in Cambridge, Massachusetts, Ceder says. That alliance also has led to important advances in the use of quantum-dot materials to create highly efficient solar cells and sodium batteries, he adds.

This solid-state electrolyte has other, unexpected side benefits: While conventional lithium-ion batteries do not perform well in extreme cold, and need to be preheated at temperatures below roughly minus 20 degrees Fahrenheit, the solid-electrolyte versions can still function at those frigid temperatures, Ceder says.

The solid-state electrolyte also allows for greater power density — the amount of power that can be stored in a given amount of space. Such batteries provide a 20 to 30 percent improvement in power density — with a corresponding increase in how long a battery of a given size could power a phone, a computer, or a car.

The team also included MIT graduate student William Richards and postdoc Jae Chul Kim; Shyue Ping Ong at the University of California at San Diego; Yifei Mo at the University of Maryland; and Lincoln Miara at Samsung. The work is part of an alliance between MIT and the Samsung Advanced Institute of Technology focusing on the development of materials for clean energy.

LG & Samsung to develop 500km+ battery for Audi Q6 e-tron

German carmaker Audi said it will develop batteries for electrically powered Q6 e-tron sport utility vehicles (SUVs) that can run more than 500 kilometers per charge, in partnerships with South Korea's LG Chem Ltd and Samsung SDI Co Ltd.

The South Korean companies will supply the batteries from plants in Europe, Audi said in a statement on Thursday.

Audi, Samsung SDI and LG Chem declined to give financial terms of the respective partnerships.

LG Chem recently entered into a patent license agreement with 3M to expand the use of nickel, cobalt, manganese (NCM) in lithium ion batteries. In May LG Chem also announced its intention to be a supplier of larger batteries between 80 and 120 kWh to car manufacturers targeting a range of 300-500 km.

LG Chem's automotive customers include General Motors, Renault SA, and Daimler AG, while Samsung SDI supplies electric vehicle batteries to BMW and Volkswagen