BMW Powers Up with Concept X5 eDrive Plug-In Hybrid

The new BMW X5 has already raised efficiency to a whole new level in the world of the luxury Sports Activity Vehicle (SAV). BMW is using the New York International Auto Show 2014 to present what it sees as the logical next step towards bringing about a radical reduction in fuel consumption and emissions in the SAV segment.

The BMW Concept X5 eDrive succeeds in fusing the familiar brand of driving pleasure generated by the xDrive intelligent all-wheel-drive system and a luxurious ambience enshrined within an interior offering tremendous versatility of use with a plug-in hybrid drive system. A conventional combustion engine works together in perfect harmony with the cutting-edge BMW eDrive technology to produce the brand's hallmark sporty drive coupled with a significant reduction in fuel consumption, making it an impressive example of the effectiveness of the BMW EfficientDynamics development strategy. As a result, the car is able to drive on electric power alone at speeds of up to 120 km/h (75 mph) and for a distance of up to 30 kilometres (approx. 20 miles), while recording average fuel consumption figures of less than 3.8 l/100 kilometres (more than 74.3 mpg imp) in the EU test cycle.

The concept study underwent a series of detailed refinements in preparation for its appearance at the New York International Auto Show and is equipped with a drive system comprising a 180 kW/245 hp four-cylinder petrol engine with BMW TwinPower Turbo technology and a 70 kW/95 hp electric motor likewise developed by the BMW Group. The motor is supplied with power from a lithium-ion battery that can be charged from any domestic socket and has sufficient capacity to enable all-electric driving with zero local emissions for a range of up to 30 kilometres (approx. 20 miles). To ensure a particularly high level of crash safety, the high-voltage battery developed for the BMW Concept X5 eDrive is housed underneath the luggage compartment, whose everyday usability remains virtually uncompromised thanks to the 40:20:40 split-folding rear backrest and an almost level loading floor.

In addition to the settings that can be activated using the characteristic BMW Driving Experience Control switch, three driving modes can be selected according to requirements and the situation at hand: intelligent hybrid drive with an optimal relationship between sportiness and efficiency (AUTO eDrive), pure electric and thus local emission-free driving (MAX eDrive) and SAVE Battery to maintain the current charge level.

Majestic poise at its most sophisticated: dynamic, flexible, luxurious, plus zero local emissions if required.

Thanks to the BMW eDrive technology that has been specifically honed for this model as part of the BMW EfficientDynamics strategy, the concept car brings a whole new brand of poise and assurance to the SAV segment. The formidable power reserves produced by its duo of drive units, its outstanding levels of motoring comfort and the optimised traction, handling stability and dynamic performance qualities over any terrain courtesy of BMW xDrive technology all endow it with the all-round sporty prowess typically associated with BMW X models, while its landmark efficiency blazes a trail for its rivals to follow. The ability to operate purely on electric power with zero local emissions, especially in city traffic, puts a whole new slant on the SAV driving experience that shows the shape of things to come. At the same time, the plug-in hybrid drive concept does not impinge in any way on the exemplary versatility offered by the Sports Activity Vehicle's interior or its distinctly luxurious ambience. In short, the BMW Concept X5 eDrive shows itself to be supremely talented in every way, deftly bringing major advances in cutting fuel consumption and emissions into harmony with state-of-the-art functionality and everyday practicality that never fails to impress.

A number of understated styling touches have been meticulously incorporated into the exterior design to underline the groundbreaking character of the BMW Concept X5 eDrive. The kidney grille bars, air intake bars and the insert in the rear bumper are all finished in the BMW i Blue colour developed for the BMW i brand, for instance, creating a stunning contrast to the Silverflake metallic exterior paintwork. The BMW Concept X5 eDrive also comes with body-coloured wheel arches, specially styled roof rails, a connector for the charging cable which – as on the BMW i models – lights up during charging, as well as 21-inch light-alloy wheels in an exclusive, streamlined design.

To make sure that the styling of the luxurious passenger compartment echoes the highly sophisticated drive concept, light blue double-felled seams adorn the Ivory White exclusive leather upholstery covering the seats, door trim panels and dashboard. Further highlight features of the specially designed interior include the Piano Finish Black interior trim with blue accent strips, "eDrive" lettering embossed in the front of the headrests, ambient lighting with a blue hue, and an eDrive button that is also illuminated in blue. In the luggage compartment lined in black velour, a transparent cover – again illuminated in blue – affords a clear view of the high-voltage battery for the electric motor.

BMW eDrive in a Sports Activity Vehicle: intelligent hybrid technology promises outstanding efficiency and hallmark driving pleasure.

Electrification of the powertrain is a key component of BMW EfficientDynamics technology and allows BMW to unlock tremendous potential for reducing fuel consumption and emissions. The BMW eDrive technology developed for this purpose comes in various versions, each precisely tailored to the particular vehicle concept. Both the BMW i3, the first all-electric production vehicle from the BMW Group, and the soon-to-be-launched BMW i8 plug-in hybrid sports car are powered by BMW eDrive technology. The BMW Concept X5 eDrive now follows in the tyre tracks of the BMW Concept Active Tourer unveiled in 2012 by demonstrating how model-specific BMW eDrive technology can be employed in plug-in hybrid models from the BMW core brand.

This is the first time that BMW eDrive technology has been hooked up with the BMW xDrive intelligent all-wheel-drive system. The BMW Concept X5 eDrive boasts the superior driving characteristics that stem from the permanent and fully variable distribution of drive power between the front and rear wheels. Regardless of the selected driving mode, the drive power generated by the electric motor, the combustion engine or the two units acting in unison is channelled swiftly and precisely to wherever it can be converted into forward propulsion most effectively. This allows the concept study to deliver all the qualities that SAVs are renowned for – superb traction and optimised handling stability in all weather and road conditions coupled with enhanced agility when taking corners at speed – in remarkably efficient fashion. The highly versatile and sporty driving abilities of the BMW Concept X5 eDrive are accompanied by average fuel consumption in the EU test cycle of less than 3.8 l/100 km (more than 74.3 mpg imp) and CO2 emissions of under 90 grams per kilometre.

Both driving pleasure and efficiency in the BMW Concept X5 eDrive are given an extra boost by an electric motor generating a maximum output of 70 kW/95 hp together with the instantaneous power delivery that has become a hallmark of electric drive units thanks to the high levels of torque available from the word go. The electric motor variant developed for the BMW Concept X5 eDrive as part of the BMW EfficientDynamics strategy also boasts sporty performance credentials, a compact design and optimised weight. The electric motor alone is capable of propelling the BMW Concept X5 eDrive to a top speed of 120 km/h (75 mph). With 250 Newton metres (184 lb-ft) of torque on tap from stationary, it gives the vehicle wonderfully spontaneous response that translates into thrillingly dynamic acceleration. It also works in tandem with the combustion engine to boost its power significantly whenever a quick burst of speed is called for. The BMW Concept X5 eDrive is able to complete the standard sprint from rest to 100 km/h (62 mph) in under 7.0 seconds.

The task of ensuring the engine and electric motor team up together to optimum effect is handled by the power electronics that were developed by the BMW Group and apply the same basic concept used in the BMW i cars. The power electronics combine a liquid-cooled inverter for driving the electric motor, supplying energy to the onboard electrical system from the high-voltage battery and for centralised control of the hybrid-specific drive functions into a single integrated system.

ECO PRO mode and all-electric driving: BMW EfficientDynamics

As in other members of the current BMW production line-up, the Driving Experience Control switch in the BMW Concept X5 eDrive can be used to select not only the COMFORT and SPORT settings but also the ECO PRO mode that fosters a particularly economical driving style. This driving mode is programmed for highly intelligent hybrid functionality, whereby the energy management system orchestrates the interaction between engine and electric drive unit as the driving situation changes in order to maximise efficiency. As a further component of the BMW EfficientDynamics technology, a hybrid-specific Proactive Driving Assistant has also been included, which works together with the navigation system to allow the route profile, any speed restrictions and the traffic situation to be factored in as well for the purpose of drive management.

In addition to this, the driver also has the option of engaging the all-electric driving mode by switching from AUTO eDrive to the MAX eDrive setting at the push of a button. With the battery fully charged, the vehicle is able to cover a distance of up to 30 kilometres (approx. 20 miles) on electric power alone, which means zero local emissions. There is also a SAVE Battery mode, which can be selected to deliberately preserve the battery's energy capacity. This might be the case, for example, if a longer journey is due to end with a final stage through urban traffic that drivers wish to complete in all-electric mode.

Everyday usability: flexible charging scenarios and impressive viability. In order to capitalise as much as possible on the superior efficiency of its electrified powertrain, the BMW Concept X5 eDrive is designed as a plug-in hybrid, allowing its high-voltage battery's energy levels to be renewed from any domestic power socket, a special Wallbox that can handle higher currents, or at a public high-speed charging station. The Wallbox Pro is designed for installation in the customer's garage and offers complete ease of use as well as exceptionally short battery recharging times, thanks to a maximum charging rate of 7.4 kW. It is controlled by means of a high-resolution touchscreen including proximity sensor, while LED light strips provide an additional indication of the charge status. The built-in load management facility governs the charging current in accordance with the current draw on the household electricity supply. The Wallbox Pro even makes it possible to use home-generated electricity, such as that obtained from solar panels. There is also a function for creating different user profiles and displaying the respective charging histories. On request, the corresponding data can be sent online, e.g. for billing purposes.

The high degree of flexibility drivers can enjoy when it comes to choosing an energy source is given an added boost by the charging cable that is carried in the vehicle. The battery unit is located underneath the luggage compartment, so that there is only a small loss of load capacity overall – the luggage compartment is able to hold two large suitcases or four 46-inch golf bags. The SAV's excellent versatility – helped by the 40:20:40 split-folding rear backrest – has been fully retained, along with its ample sense of spaciousness and the impressive level of comfort offered to the occupants of all five seats.

Intelligent connectivity for yet greater efficiency.
Innovative functions from BMW ConnectedDrive assist with planning journeys in such a way as to maximise the amount of time spent driving on electric power alone. In the BMW Concept X5 eDrive, the current electric range thus appears as a numerical value in the instrument cluster. Intelligent connectivity enables the vehicle's dynamic range display to constantly make allowances for any factors affecting the range, such as traffic conditions, route profile and driving style.

When route guidance is activated, the location of local charging stations is added to the selection of points of interest shown on the navigation map. Drivers are able to call up charging stations situated along the planned route or at their destination, while the system additionally notifies them of the charging time needed to fully replenish the battery's energy levels. Furthermore, information graphics indicating the current operating status when engine and motor work together in unison, the impact of the driving style on vehicle efficiency and the fuel consumption history for selected periods of time can be shown in the iDrive operating system's Control Display, along with other information.

Drivers are also able to view all information relating to the battery's charge level and electric driving range on their smartphone. A Remote app from BMW ConnectedDrive that has been specially designed with electric mobility in mind even enables them to control the charging process from their phone. It also allows the vehicle to be pre-programmed whenever it is connected to an electricity supply: the heating and air conditioning systems can be activated remotely in this way to get the passenger compartment to a pleasant temperature ready for the start of the journey.

BMW-Toyota sports car to use all-wheel drive and supercapacitors

BMW's newly minted alliance with Toyota will result in a hybrid all-wheel-drive Z4 / Supra replacement, complete with supercapacitor technology for increased performance, Autocar reports.

The car will have a front-engined direct-injection four cylinder turbo and electric motors driving all four wheels. The supercapacitor system will be derived from technology first seen in Toyota's Hybrid Supra HV-R in 2007 when it won the Tokachi 24 hour race and more recenly Toyota's Le Mans LMP1 race cars.

BMW will supply the 2.0 liter turbocharged engine combined with electric motors produced by BMW at its engine plant in Munich while a Toyota-developed electronics system is expected to provide torque-vectoring capability.

With the car expected to have a front mounted engine and sequential manual gearbox in a conventional longitudinal powertrain layout it will be interesting to see what type of electric motors BMW deploy to drive the front wheels, perhaps in-wheel motors?

BMW Lifts i3 Electric Car Production to Meet Rising Demand [VIDEO]

BMW has increased production of the i3 electric city car 43% to meet demand that has exceeded the carmaker’s initial expectations.

The premium manufacturer in recent weeks has raised daily output to 100 vehicles from 70 previously at the factory in Leipzig, Germany, where the model is assembled, Harald Krueger, BMW production chief, said in an emailed statement to Bloomberg.

BMW has already built more than 5,000 i3s since the start of the year, Krueger said. The current production rate translates to about 20,000 vehicles for the full year, almost twice as much as BMW’s initial sales forecast.

BMW began rolling out the i3 last November and will begin bringing the i8 hybrid sports car to market in June. Both vehicles have a carbon fiber chassis to cut weight and improve fuel efficiency. The Munich-based automaker said in February that it’s building a second production hall at a jointly run plant with SGL Carbon SE (SGL) to boost assembly of the material.

“Following the market introduction in Europe, we’re now rolling out the i3 in the U.S.,” Krueger said in the statement. “The U.S. will be the largest market for the i3.”

BMW gained as much as 43 cents, or 0.5 percent, to 90.57 euros and was up 0.3 percent as of 1:21 p.m. in Frankfurt trading. The stock has climbed 5.8 percent this year, valuing the German manufacturer at 57.9 billion euros ($79.9 billion).

Chief Financial Officer Friedrich Eichiner said in October the company was considering a production increase for the model after early demand exceeded expectations. BMW said at the time it had 11,000 orders for the compact car, which will cost $41,350 in the U.S., and aimed to sell more than 10,000 in 2014.

“BMW invested a lot of money” on their electric-car push and using carbon fiber, said Stefan Bratzel, director of the Center of Automotive Management at the University of Applied Sciences in Bergisch Gladbach, Germany. “It was a bold move, but it also bears some risk as production is complex. They need to make this work.”

BMW i3 Review by Grant Thomas [VIDEO]

Grant Thomas provides a 30 minute review of the BEV version of a right hand drive, UK delivered, BMW i3.

At approx 17:28 there is a demonstration of the i3's autonomous Active Cruise Control feature which doubles as a stop & go traffic jam assist and collision avoidance brake system.

Mini Clubman AWD Plug-In Hybrid due late 2015

MotoringFile reports that high-level sources have confirmed the Mini Clubman Plug-In Hybrid will be all-wheel drive in at least one configuration.

The 2016 Mini Clubman Hybrid will have a 1.5L three cylinder lifted from the F56 Cooper powering the front wheels. Integrated into that will be a plug-in hybrid system (likely derived from the BMW i8) powering the rear wheels only. Think of it as the powertrain layout from the i8 reversed.

The system that BMW has shown in concept form (and has been testing for years in R55 Clubman mules) has an output of approx 140 kW / 190 hp. With a fully charged battery, the electric only range should be over 30 kilometers giving the Clubman Plug-In Hybrid the ability to be in 100% electric mode for the majority of day-to-day trips.

The Mini Clubman Hybrid will likely debut around the same time as the Clubman itself, in the second half of 2015.

Rolls-Royce says Plug-In hybrid ‘essential’ in two years

Rolls-Royce now looks likely to adopt plug-in hybrid technology within the next three years. Chief Torsten Müller-Otvos told Auto Express at the Geneva show that “It will be essential in two years, maybe not from customer demand but through legal regulation on emissions”

With parent company BMW already working on plug-in hybrid technology that is soon to be launched on the X5 eDrive – which uses a four-cylinder turbo paired with an electric motor – Rolls-Royce could soon have access to such a powetrain. Müller-Otvos said: “We are now a completely self-sustaining business, but technology like this is so expensive to develop that without BMW, Rolls-Royce would probably not have survived.”

BMW i8 demand already exceeding planned production volume

With the completion of the development work and final preparations for production at the BMW Group plant in Leipzig, the launch of the BMW i8 approaches its peak. Delivery of the first customer cars will start in June 2014, beginning with the main European markets.

Beforehand, special public events will be held in various regions all over the world to meet the enormous interest in the BMW i8. For this purpose BMW i agents will be equipped with separate demonstration vehicles. The start of series production of customer vehicles will commence in April. Customers have already been able to place pre-orders for the BMW i8 in all major markets since autumn 2013.

However, demand for the BMW i8 is already exceeding the planned production volume during ramp-up.

Further improvements to the BMW i8 specifications
In parallel to the completion of the statutory type approval the BMW engineers were also able to achieve a further improvement of key driving performance and fuel consumption data. Thanks to its novel powertrain concept BMW eDrive in plug-in hybrid configuration, the i8 combines a 0–100 km/h (62 mph) sprint time of 4.4 seconds with an EU test cycle average fuel consumption of 2.1 litres/100 km (134.5 mpg imp) and CO2 emissions of 49 g/km. The related electricity consumption was measured at 11.9 kWh per 100 km .

Every-day fuel economy substantially better than all conventional sports car concepts
Although the results achieved in the EU test cycle allow for quick comparisons with other vehicles and despite their relevance ​​for a favourable taxation in many countries, the BMW i8 engineers hat a particular focus on low fuel consumption in real life.

As a result the BMW i8 shows extraordinary efficiency not only in standardized testing procedures, but also in the practice of everyday traffic:

In typical everyday commuting, with the battery fully charged at the beginning, the BMW i8 can return a fuel consumption below 5 litres/100 km (more than 56 mpg imp) around town. If the commute includes extra-urban or motorway driving less than 7 litres (more than 40 mpg imp) are achievable.. Even in longer-distance operation at higher speeds, drivers can keep their average fuel consumption below 8 litres/100 km (more than 35 mpg imp). Overall, the fuel consumption of the plug-in hybrid model therefore works out around 50 per cent better than that of conventionally powered sports car models.

World’s first production car with laser light.
Introduction of the optional BMW laser headlights is scheduled for autumn 2014, when the BMW i8 will become the world’s first production car to offer this innovative lighting technology. BMW laser headlights are around 30 per cent more energy-efficient than the BMW i8’s standard LED headlights and provide considerably more powerful road illumination, with a range of up to 600 metres. Highly concentrated beams of light from high-performance laser diodes act on a fluorescent phosphor material inside the headlight, which projects a sharply focused beam of light onto the road. The laser headlights produce a light similar to natural daylight and are therefore always easy on the eye.

BMW eDrive: Sports car powertrain of the future.
The BMW i8’s plug-in hybrid system comprises a 170 kW/231 hp, 320 Nm (236 lb-ft) three-cylinder petrol engine with BMW TwinPower Turbo technology and a 96 kW/131 hp, 250 Nm (184 lb-ft) hybrid synchronous electric motor. The BMW eDrive system also includes a lithium-ion high-voltage battery (with a usable capacity of 5,2 kWh) and intelligent energy management that uses the combined output of 266 kW/362 hp to provide breathtaking performance and maximum efficiency, while always taking into account the driving situation and driver requirements. The excellent balance between driving pleasure and fuel economy is aided by a low vehicle weight of 1,485 kg (DIN kerb weight) and an unusually good drag coefficient (Cd) for a sports car of 0.26.

In zero-emission all-electric mode, the BMW i8 has a top speed of 120 km/h (75 mph) and a range of 37 kilometres (23 miles) within the EU test cycle. Depending on whether the plug-in hybrid sports car’s lithium-ion battery is recharged at a household power socket or BMW i Wallbox, or at a public charging station, charging times range from less than two up to three hours. In Sport mode the BMW i8 offers mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically governed top speed is 250 km/h (155 mph).

Test Driving the BMW i3 with the Life360 app [VIDEO]

Mashable reporting from SXSW 2014 on a test drive of the all-electric BMW i3.

The soon-to-be-released EV comes pre-loaded with Life360 software, an app designed to let families find each other.

This video also includes the world's lamest attempt at a donut in an EV.

BMW to launch Carbon Fiber wheels

BMW could offer entire wheels in carbon fiber reinforced plastic, are close to production and available in one or two years. According to BMW the full-CFRP wheel is 35-percent lighter than a forged alloy wheel, and the one using a CFRP rim and alloy spokes will be 25-percent lighter.

Innovative use of materials in the BMW i3 and BMW i8.
Systematic lightweight design is particularly important on electrically powered vehicles, given that vehicle weight is one of two main constraints on vehicle range, along with battery capacity. For EVs, too, reduced weight means reduced energy consumption and improved driving dynamics. In order to offset the weight penalty of the electric components, the BMW Group came up with a rigorous lightweight design strategy for the BMW i brand in the form of the LifeDrive concept, an innovative vehicle architecture which for the first time combines an aluminium chassis and a CFRP passenger cell.

CFRP: high-tech material of the future.
Carbon-fibre-reinforced plastic (CFRP) boasts a particularly favourable strength-to-weight ratio and is therefore an ideal material for use in the vehicle body. For the same functionality, CFRP is around 30 per cent lighter than aluminium and 50 per cent lighter than steel. Used in the right places, this material therefore reduces weight, optimises the vehicle’s centre of gravity and improves body strength. This material is currently being used not only in the new BMW i3 and BMW i8 models: the sporty BMW M3/M4 and BMW M6 models have likewise been utilising the benefits of this high-tech material for some time. Components such as their roof and bumper supports are made of CFRP. The BMW Group is currently working on further potential applications, including the use of this material in rotating-mass components. Examples include hybrid aluminium/CFRP wheel rims, while CFRP’s high rigidity and low weight allow the CFRP propeller shaft on the BMW M3/M4 to be produced as a single-piece component, without a centre bearing. This results in 40 per cent weight savings over the previous model and reduced rotating masses, leading to further improved response.

In future, other BMW and MINI models will also benefit from this lightweight material in various ways. For example, production offcuts can be reprocessed into “secondary” (recycled-content) CFRP, which can be used to reduce the weight of components such as seat frames, instrument panel frames and spare wheels by up to 30 per cent, with simultaneous improvements in terms of cost-efficient, environmentally friendly manufacturing.

Technology leader in mass production of CFRP components.
After more than ten years of intensive research, resulting in improvements to processes, materials, production machinery and tools, the BMW Group has today become the first and only car manufacturer in the world with the necessary know-how to use CFRP in mass production. The processing technology used is unique and cycle times for even the more complex CFRP components are unusually short. The same is true of the specially developed bonding process used in the fully automated assembly of body parts.

As well as setting standards in the production of CFRP finished components, the BMW Group also attaches utmost importance to the use of environmentally friendly, resource-efficient and largely CO2-free processes in the manufacture and processing of the raw materials themselves. From fibre production right through to recycling of fibres and composites, the company is involved in all the various process steps in a state-of-the-art CFRP production chain that begins in Moses Lake in the USA and moves through Wackersdorf and Landshut to final assembly in Leipzig.

First Look: BMW X5 eDrive plug-in hybrid

At BMW’s Efficient Dynamics Innovation Days 2014 in Germany, the company provided the first opportunities for test-driving the BMW X5 eDrive plug-in hybrid (PHEV) prototype. BMW also presented the first four-cylinder member of its new EfficientDyanamics engine family—the 2.0-liter unit would serve as the engine component in a future production X5 eDrive PHEV—as well as ideas for future solutions in the field of lightweight design, aerodynamics and thermal management.

Powertrain technology is key to BMW’s EfficientDynamics strategy, with a dual focus on the continuous evolution of conventional internal combustion engines on the one hand and the development of alternative drive concepts on the other. As well as achieving significant emissions reductions based on continuous evolutionary advances of the TwinPower Turbo gasoline and diesel engines, future BMW core brand models will also benefit from the transfer of new electrified drive technology (BMW eDrive) developed by the BMW i sub-brand.

All BMW eDrive components are developed in-house by the BMW Group and customized as necessary to suit different powertrain applications. Current examples are the all-electric BMW i3 and the plug-in hybrid BMW i8. The BMW i8 is at the leading edge of the Efficient Dynamics strategy; the technology used in the i8 powertrain will find its way into vehicles of the BMW core brand.

The i8 powertrain.

The plug-in hybrid powertrain of the production BMW i8 unveiled at the 2013 Frankfurt Motor Show (earlier post) combines electric drive with a highly turbocharged internal combustion engine. With its combined maximum output of 266 kW/362 hp, combined peak torque of 570 nm (420 lb-ft), 0 – 100 km/h (62 mph) acceleration in 4.4 seconds, EU fuel consumption of 2.1 l/100 km (112 mpg US) and CO2 emissions of 49 g/km, this plug-in hybrid sports car shows that it is possible to improve performance and reduce fuel consumption at one and the same time.

The electric motor provides a boost effect that assists the gasoline engine when extra accelerating power is required. It can also act as the sole source of driving power, providing a maximum speed of 120 km/h (approx. 75 mph) and a range of up to 35 kilometres (approx. 22 miles). Its power is supplied by the lithium-ion high-voltage battery pack.

During overrun, the high-voltage battery can be recharged via the electric motor. It can also be recharged by the electric motor when power demands allow. The high-voltage starter-generator, responsible for starting the engine, can also be used as a generator to charge the battery.

Plug-in hybrids are efficient whether used for short-distance or for long-distance driving, or a mixture of the two. Intelligent powertrain management ensures that both power sources always work together optimally. Power sharing between the internal combustion engine and the electric motor is managed in accordance with load and driving situation.

Driver preferences are also taken into account, with a bias either towards sporty, dynamic performance characteristics or towards extra-energy-efficient operation of the overall system. To set these characteristics, the driver can choose from a range of pre-selectable driving modes, offering very dynamic, more comfortable or highly efficient operation.

Powertrain electrification has enormous potential for reducing fuel consumption and emissions—even for large, heavy vehicles—without compromising performance and dynamism. Quite the reverse, in fact, BMW noted: the boost function of the electric motor, the additional drive torque of which supplements the internal combustion engine during low- and mid-range acceleration, significantly enhances the sporty driving experience.

As a further step in the Efficient Dynamics strategy, there are plans in the medium-term to transfer the advanced powertrain technology of the BMW i8 to vehicles of the BMW core brand as well.

The X5 plug-in hybrid.

The BMW Concept X5 eDrive model presented in September 2013 at the IAA in Frankfurt showed a way in which Sports Activity Vehicles can be made more efficient. The SAV concept model combines the BMW xDrive intelligent all-wheel-drive system with a new BMW plug-in hybrid system.

Supported by the boost function of the electric motor, the SAV can deliver powerful acceleration and a 0 – 100 km/h (62 mph) acceleration time of less than seven seconds. The development goal for this model is average fuel consumption of approximately 3.8 liters per 100 kilometers (62 mpg US) in the EU test cycle, and CO2 emissions of 90 grams per kilometer—new benchmarks in this vehicle category. The vehicle is also capable of all-electric operation for up to 30 kilometers (more than 18 miles), in which mode its produces no emissions at all at the point of use.

With synchronization of the BMW eDrive technology with the intelligent BMW xDrive all-wheel-drive system, the drive torque from the electric motor, the four-cylinder gasoline engine or both power sources operating in tandem can be split in a variable ratio between the front and rear wheels. The split is automatically controlled to provide superior traction, optimal stability and highest standards of agility and performance under all conditions.

Whereas the BMW i8 is fitted with the BMW Group’s highly turbocharged three-cylinder engine, the future BMW X5 eDrive will use an advanced four-cylinder gasoline engine from the same family—the new Efficient Dynamics engine range with TwinPower Turbo technology. BMW said that this demonstrates its overall aim of providing a customized electric mobility solution in every model series.

Four-cylinder TwinPower Turbo.

The new Efficient Dynamics engine family comprises three-, four- and six-cylinder units. By increasing the aluminium content and using magnesium, the BMW Group has also achieved substantial reductions in the average weight of the new engines. At the same time thermal management and acoustic properties have also been improved.

The first member of this new engine family is the 1.5-liter three-cylinder gasoline engine making its debut in the BMW i8. BMW is now presenting the first four-cylinder engines in this new engine family. These 2.0-liter engines with TwinPower Turbo technology will enter the market in the first half of 2014, in both gasoline and diesel versions.

“TwinPower” stands for a combination of variable load control with advanced injection technology. TwinPower incorporates fully variable components such as VANOS or Double-VANOS seamlessly variable camshaft timing; VALVETRONIC variable valve control; and/or VNT (variable nozzle turbine) turbochargers on the diesel models. These are complemented by High Precision Direct Injection on the gasoline models, with common-rail direct injection on the diesels, and finally by the third element in this high-tech concept—turbocharging.

A feature of the gasoline models continues to be VALVETRONIC throttle-free load control.

Common to all units in the new engine family is an in-line configuration. The core engine comprises cylinders with an individual displacement of 500 cc. This means the new three-cylinder engine has a displacement of 1.5 liters, the four-cylinder engine 2.0 litres and the six-cylinder unit 3.0 litres. Thanks to construction commonality within a combustion type, the proportion of shared components has increased to as much as 60%, while design commonality between gasoline and diesel engines is approximately 40%. Finally, all the engines run cold on the intake side and hot on the exhaust side. This is one reason why the three- and four-cylinder engines from the new family can be mounted either longitudinally or transversely in future BMW and MINI models.

With the new modular engine family, the BMW Group is able to develop three-, four- and six-cylinder engines with different power ratings that are suited to different vehicle concepts. This makes it possible to achieve higher production volumes, leading to significant savings on development and production costs. At the same time the high level of design commonality between the engines makes it easier to develop additional versions and makes it possible to build relatively small volumes of such engines at short notice and cost-efficiently.

As a result it is now possible for the first time at the BMW Group’s engine plants to build both gasoline and diesel engines from the new family at the same time, on the same production line. That allows for flexible responses to variations in demand or in market trends.

Proactive drive system.

BMW’s proactive drive system—which is also applied in the X5 PHEV concept—is based on the principle that energy should not be used unless it is actually needed. The vehicle should anticipate driving situations in advance, so that it can automatically prepare for upcoming requirements. The necessary information is supplied by the vehicle electronic system’s numerous sensors, the navigation system and, most recently, front-mounted radar and camera sensors.

More models from all BMW Group model ranges are already adopting this type of vehicle energy management, with navigation-based information allowing the transmission management and the Proactive Driving Assistant to identify the upcoming route and route profile, i.e. features such as uphill and downhill gradients and speed limits. This ability to “see ahead” allows the transmission to automatically select the correct gear in good time to suit the driving situation.

Depending on individual driving style, ECO PRO mode can achieve a reduction of up to 20% in fuel consumption. A further 5% saving can be achieved by using the coasting function, Proactive Driving Assistant and ECO PRO Route. The Proactive Driving Assistant works in tandem with the navigation system to identify route features in good time. It takes into account speed limits, corners, the start of built-up areas, roundabouts, turn-offs and motorway exits. And based on the recorded driving data, the system also offers tips on a fuel-saving driving style.

In COMFORT and SPORT modes, the proactive drive system adapts the automatic transmission’s shift program to the driving situation. Whereas a conventional shift strategy is “blind” and only operates reactively, in response to throttle position and driving resistances, the Proactive Driving Assistant makes it possible to “anticipate” the route ahead and to adapt gear changes appropriately in real time.

The coasting function (on models with automatic transmission) disconnects the engine from the powertrain at speeds between 50 and 160 km/h (approx. 30 and 100 mph), allowing the vehicle to coast using only kinetic energy.

When ECO PRO mode is activated, the BMW navigation system shows the driver not only the fastest and shortest routes to a given destination but also the most efficient. Taking into account the current driving situation and route profile, the system calculates which route will offer maximum fuel savings with minimum loss of time. The driver can then decide whether to save time or fuel. The savings achievable on a particular route are shown as a percentage. In the event of congestion or other hold-ups on the selected route, the system will propose alternative routes. The route calculations also take into account, on a continuous, real-time basis, the driver’s individual driving style, based on vehicle fuel consumption in different driving situations.

The ECO PRO Analyser, which is a standard component of ECO PRO mode, allows drivers to analyze their driving styles at any time and to identify further potential for reducing fuel consumption. Before, during and after the trip, the driver can call up statistics in the ECO PRO Analyser to check efficiency of accelerating, decelerating and changing gear, and to see what sort of positive impact an improved driving style could have on fuel consumption and therefore also on range. The ECO PRO driving tips are intended to aid more fuel-efficient driving.

Using BMW ConnectedDrive Services and the free-of-charge BMW Connected App, the recorded data can also be transferred to a compatible smartphone. A rating scale indicates the fuel efficiency of the driving style.

With onboard radar and camera sensors, the third generation of the Proactive Driving Assistant is also able to incorporate the vehicle’s immediate driving environment into its operating strategy. This information allows the automatic transmission to adapt its shift strategy even more precisely to the current driving situation for greater efficiency. For example, the system can identify slower-moving vehicles in the lane ahead, as well as vehicles in neighboring lanes. Strategically timed gear changes can then be performed which provide sufficient deceleration, even without braking, to prevent collisions with vehicles in front. At the same time, gear changes can provide the necessary power reserves for overtaking and dynamic lane changes.

The proactive drive system also improves the dynamic characteristics of the vehicle, whether in ECO PRO mode, which is geared to maximum efficiency, in SPORT mode, where the automatic transmission uses a performance-biased shift strategy, or in COMFORT mode, which adopts a more relaxed, easygoing strategy.

If the vehicle is approaching a curve, the transmission automatically changes down to the most appropriate gear, if necessary making use of engine braking effect. All the necessary shift operations will have been completed by the time the vehicle enters the corner. If the system detects that another bend is coming up very soon, it identifies the radius of the corner and again selects the optimal gear. This ensures that higher engine braking power is available on approach.

The power reserves available for subsequent acceleration are also increased, while unnecessary gearshifts and hunting between gears on or between bends is avoided.

The proactive drive system works in a similar way at roundabouts, intersections, turn-offs and at slip roads on or off motorways. Regardless of the route specified in the navigation system, the proactive drive system also reacts to the use of the direction indicator.