BMW i8 Faster than an M3 using one-third less fuel than a Toyota Prius

At a driving event at the BMW Group’s Miramas test track in France, the BMW i presented a prototype of its second production vehicle, the BMW i8. BMW i is synonymous with visionary mobility concepts and a new definition of premium quality that is strongly focused on sustainability. Following the world debut of the first production model, the BMW i3, the BMW Group’s next step will be to extend this revolutionary answer to the future challenges facing personal mobility to the sports car segment in the BMW i8. This plug-in hybrid model is the most progressive sports car of our time, extending the basic BMW i philosophy of sustainability to a new vehicle segment.

The BMW i8 fulfills the promise of The Ultimate Driving MachineTM in a revolutionary and mold-breaking form. This is reflected in a highly emotive design, dynamic sports car performance, and fuel efficiency and emissions figures worthy of a small car. Pairing an exceptionally lightweight, aerodynamically optimized body with cutting-edge BMW eDrive technology, a compact, turbocharged 1.5-liter BMW TwinPower Turbo gasoline engine and intelligent energy management, the BMW i8 marks the next stage in the evolution of the Efficient Dynamics strategy. Its revolutionary approach achieves an unprecedented balance between performance and fuel efficiency. Thanks to its carbon-fiber-reinforced plastic (CFRP) passenger cell, the BMW i8 sets new standards for a plug-in hybrid vehicle in terms of low weight. It can operate solely on electric power, which means no tailpipe emissions, and offers the dynamic performance of a sports car, with an expected 0 – 60 mph sprint time under 4.5 seconds.

The BMW i8 was designed from the outset as a plug-in hybrid sports car, with the emphasis on agile performance and outstanding efficiency. Its characteristic BMW i LifeDrive architecture provides the best possible basis for lightweight design. Its main components are the aluminum Drive module, which incorporates the internal combustion engine and electric motor, the battery, the power electronics and the chassis components, along with structural and crash functions, and the Life module, which essentially comprises the 2+2-seater CFRP passenger cell. This architecture also gives the BMW i8 a very low center of gravity and a near-perfect 50:50 axle load ratio, both of which increase its agility.

The BMW i8’s plug-in hybrid system is specific to this model. Developed and produced by the BMW Group, it marks the next step in the evolution of the Efficient Dynamics programme. A compact three-cylinder petrol engine with BMW TwinPower Turbo technology is combined with an electric drive system and a lithium-ion battery which can be recharged at a standard household power socket. The 231 hp (170 kW) gasoline engine sends its power to the rear wheels, while the 131 hp (96 kW) electric motor powers the front wheels. This configuration offers all-electric driving capability with a range of up to approx. 22 miles (35 kilometers) and a top speed of approximately 75 mph (120 km/h). With both drive systems engaged, it also offers road-hugging all-wheel-drive performance with powerful acceleration and dynamic torque vectoring during sporty cornering. The more powerful of the two powerplants drives the rear wheels. The hybrid system supplements this with power from the electric motor to deliver typical BMW driving pleasure combined with groundbreaking efficiency. Calculated using the EU test cycle for plug-in hybrid vehicles, the average fuel efficiency of the BMW i8 at model launch will be less than 2.5 liters/100 km, which equates to approximately 95 miles per US gallon, with CO2 emissions of less than 59 grams per kilometer.

Optimal balance between performance and fuel economy: BMW i8 as an exciting evolution of the Efficient Dynamics strategy.

It is now more than a decade since the BMW Group launched its Efficient Dynamics vehicle development strategy, whose aim is to significantly improve both the performance and the efficiency of new BMW Group models. Efficient Dynamics combines evolutionary advances in existing technologies with the development of new and revolutionary drive concepts. Efficient Dynamics solutions include efficient lightweight design and aerodynamic concepts, high-performance drive systems based on TwinPower Turbo technology and BMW eDrive, and intelligent management of all energy flows within the vehicle. The new, revolutionary technology now being introduced on models from BMW i will subsequently find its way into the vehicles of the BMW Group’s core brands.

BMW i is also setting benchmarks in the quest for zero CO2 emissions in urban driving. The research and development work carried out since 2007 as part of project i has laid the foundations for revolutionary mobility solutions strongly influenced by environmental, economic and social change around the world. The BMW Group is pursuing an integrated approach, as embodied in the BMW i brand, which aims to achieve the necessary balance between individual needs and the global mobility requirements of the future. The BMW i focus is squarely on all-electric and plug-in hybrid mobility. Groundbreaking design, intelligent lightweight engineering, typical BMW driving pleasure coupled with zero tailpipe emissions, intelligent energy management and resource- and energy-saving production processes are all combined into an innovative premium-quality package.

LifeDrive architecture with an aluminum chassis for the powertrain and a CFRP passenger cell: for more excitement, lower weight and optimized drag.

The LifeDrive architecture specially developed for BMW i vehicles offers the ideal platform for turning the tide of spiraling weight while at the same time achieving distinctive styling exclusive to BMW i. With a length of 184.6 inches (4,689 mm), a width of 76.5 inches (1,942 mm) and a height of 50.9 inches (1,293 mm), the BMW i8 has the proportions of a sports car. Its dynamic personality is also stressed by a long bonnet, conspicuous aerodynamic features, an elongated roofline, short overhangs and a long wheelbase of 110.2 inches (2,800 mm). Characteristic BMW i form language wraps up this groundbreaking combination of sporty performance and efficiency in a charismatic 2+2-seater design.

The BMW i8 combines a drag coefficient (Cd value) of 0.26 with outstanding aerodynamic balance. The finely honed air flow around all parts of the vehicle body makes for an excellent lift/drag ratio, resulting in superb driving dynamics and stability.

Intelligent lightweight design – from the overall concept down to the smallest detail.

With its combination of the aluminum Drive module and the CFRP passenger cell (Life module), the BMW i8 is also an excellent example of intelligent lightweight design – one of the guiding principles of the Efficient Dynamics strategy. Use of the lightweight high-tech material CFRP, which also offers excellent crash performance, brings weight savings of 50 percent over steel and around 30 percent over aluminum, with equivalent or improved strength. These savings offset the additional weight of the electric motor and the high-voltage battery, giving the BMW i8 a curb weight of less than 3,285 lbs (1,490 kilograms). The LifeDrive architecture also brings benefits in terms of weight distribution. The battery pack is situated low down in the middle of the vehicle, resulting in a low and central center of gravity, which improves safety. No other current model of a BMW Group brand has such a low center of gravity.

The front-rear axle load distribution maximizes agility with a near-perfect 50:50 axle load ratio. The compact electric motor, together with the transmission and power electronics, are situated in close proximity to the electrically powered front axle. The turbocharged gasoline engine, which is located together with its transmission in the rear of the BMW i8, likewise sends its power to the road via the shortest possible route, i.e. through the rear wheels. As a finishing touch to this excellent weight distribution, the lithium-ion battery pack is centrally located in the vehicle, slightly forward of the mid-point. In terms of crash safety, this is an ideal location for the battery, which is integrated in an aluminum housing.

The doors comprise a CFRP inner structure and an aluminum outer skin. This reduces the weight of the door by 50 percent compared with a conventional design. The high-quality, naturally tanned leather of the seats highlights the “next premium”, sustainable philosophy of BMW i. The magnesium instrument panel support saves weight on two fronts – firstly through intelligent design, leading to around 30 percent weight savings compared, for example, with the BMW 6 Series. In addition, the high structural rigidity provides a strengthening effect which allows the number of components to be reduced, thereby lowering weight by a further 10 percent. Innovative foam plastic technology used in the air conditioning ducts brings 60 percent weight savings over conventional components, while also improving acoustics thanks to its sound-absorbing properties.

The fact that the power electronics and electric motor are directly connected reduces the amount of wiring required, while partial use of aluminum wiring brings further weight reductions. Lightweight design is also a feature of the BMW i8’s chassis systems – including the wheels, where the standard-fitted 20-inch forged aluminum wheels combine aerodynamic design with weight savings. The rigorous application of the lightweight design strategy even extends to aluminum screws and bolts, which are around 45 percent lighter than corresponding steel components, with the same strength and functionality.

The BMW i8 is also the world’s first volume-produced vehicle to be equipped with chemically hardened glass. This innovative technology, to date used mainly in Smartphone manufacturing, results in very high strength. The partition between the passenger compartment and boot of the BMW i8 consists of two layers of chemically hardened glass, each of which is just 0.7 millimeters thick, with acoustic sheeting sandwiched between. In addition to excellent acoustic properties, a further advantage of this solution is weight savings of around 50 percent compared with conventional laminated glass.

For maximum driving pleasure and efficiency: BMW TwinPower Turbo engine and electric motor developed by the BMW Group.

The plug-in hybrid system of the BMW i8, which comprises a BMW TwinPower Turbo engine combined with BMW eDrive technology, offers the best of both worlds: excellent potential for improved efficiency and exciting, sporty driving characteristics. The BMW Group has developed not only the internal combustion engine and electric motor in-house but also the power electronics and the battery. This ensures that all these components offer high product and quality standards, based on the outstanding capabilities of the BMW Group in the field of powertrain research and development.

The revolutionary character of the BMW i8 is emphasized by a further innovation: the use of a new internal combustion engine which is making its debut in this model. The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine. This highly turbocharged unit is equipped with latest-generation BMW TwinPower Turbo technology. It is exceptionally compact and develops maximum power of 231 hp (170 kW). The resulting specific output of 154 hp (113 kW) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.

The new three-cylinder engine derives its typical characteristics from the BMW inline six-cylinder engines, to which it is closely related and which are noted for their eager power delivery, revving ability and refinement. The three-cylinder’s BMW TwinPower Turbo technology comprises a high-performance turbocharging system and direct gasoline injection with high-precision injectors positioned between the valves, along with VALVETRONIC throttle-less load control, which improves efficiency and response thanks to seamlessly variable valve lift control. Like a six-cylinder engine, the three-cylinder unit is free of first and second order inertial forces. The low roll torque, a typical feature of a three-cylinder design, is further reduced by a balancer shaft, while a multi-stage damper integrated in the automatic transmission ensures very smooth and refined running at low rpm. BMW TwinPower Turbo technology and low internal friction improve both fuel consumption and torque characteristics. Accelerator response is sharp and the three-cylinder unit quickly reaches its maximum torque of 236 lb-ft (320 Nm).

The BMW i8’s second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 236 lb-ft (320 Nm) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. The linear power delivery, which extends right up to the high end of the rpm range, is down to a special motor design principle exclusive to BMW i. BMW eDrive technology refines and improves on the principle of the permanently excited synchronous motor via a special arrangement and size of the torque-producing components. This results in a self-magnetising effect normally confined to reluctance motors. This additional excitation ensures that the electromechanical field generated when current is applied remains stable even at high rpm.

As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed is approximately 75 mph (120 km/h). The BMW i8 has a maximum driving range in this emission-free, virtually soundless, all-electric mode of up to 22 miles (35 kilometers). The motor derives its energy from the lithium-ion battery which is centrally mounted underneath the floor of the vehicle. The model-specific version of the high-voltage battery was developed and produced by the BMW Group. It has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3½ hours from a conventional 120 volt, 12 amp household circuit or approximately 1½ hours from a 220 volt Level 2 charger.

The BMW i8’s vehicle concept and powertrain control system mark it out as a progressive, revolutionary sports car. The BMW i8 always achieves the optimal balance between performance and efficiency, whatever the driving situation. When power demands allow, the high-voltage battery is recharged by the electric motor. The high-voltage starter-generator, responsible for starting the engine, can also be used as a generator to charge the battery, the necessary power being provided by the BMW TwinPower Turbo engine. The battery can also be recharged via the electric motor during overrun. These various processes help to prevent depletion of the BMW i8’s battery in order to maintain the electric drive power. The all-electric driving range is sufficient to cover most urban driving requirements. Out of town, the BMW i8 offers impressively sporty performance which is also very efficient thanks to the power-boosting support for the gasoline engine from the electric motor. With such versatility, the BMW i8 belongs to a new generation of sports cars which unites exciting performance with cutting-edge efficiency – to enhance both driving pleasure and sustainability.

Driving Experience Control and eDrive button: a choice of efficiency and performance characteristics – at the touch of a button.

The rear wheels of the BMW i8 are driven by the gasoline engine via a six-speed automatic transmission. The front wheels are driven by the electric motor via an integrated two-stage automatic transmission. Combined maximum power and torque of 362 hp (266 kW) and 420 lb-ft (570 Nm) meters respectively provide all-wheel-drive performance which is as dynamic as it is efficient. The BMW i8’s intelligent powertrain control system ensures perfect coordination of both power sources. The variable power-sharing between the internal combustion engine and the electric motor makes the driver aware of the sporty temperament of the BMW i8 at all times, while at the same time maximizing the energy efficiency of the overall system. Utilizing both power sources, the 0 – 60 mph acceleration time is expected to be less than 4.5 seconds. Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 155 mph (250 km/h), which can be reached and maintained when the vehicle operates solely on the gasoline engine. Variable front-rear power splitting in line with changing driving conditions makes for excitingly dynamic cornering. On entering the corner, the power split is biased towards the rear wheels to improve turning precision. For more vigorous acceleration out of the corner, the powertrain controller returns to the default split as soon as the steering angle becomes smaller again. The BMW i8 also offers the driver unusual scope to adjust the drive and suspension settings of the vehicle in order to adapt the driving experience to his or her individual preferences. As well as the electronic gear selector for the automatic transmission, the driver can also use the Driving Experience Control switch – a familiar feature of the latest BMW models – or, exclusively to the BMW i8, the eDrive button.

Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra-sharp performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking: for this, the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. At the same time, gear change times are shortened and an extra-sporty setting is selected for the standard-fitted Dynamic Damper Control. Also in this mode, the programmable instrument cluster supplies further driving-related information in addition to the rev counter display.

The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, at the touch of a button, ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimised driving style. The powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption – but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is over 310 miles (500 km) in COMFORT mode. In ECO PRO mode, this can be increased by up to 20 percent. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated. The driving mode selected at a given moment is indicated to the driver on the programmable instrument cluster by a distinctive color and by a different, mode-specific set of driving information. The three-dimensional appearance of the display adds to the futuristic look and feel of the vehicle as a whole.

High-quality chassis technology, DSC and Dynamic Damper Control as standard.

The high-end chassis and suspension technology of the BMW i8 is based on a double-track control arm front axle and a five-link rear axle, whose aluminum components and geometry are specially configured for intelligent weight savings. The electromechanical power steering offers easy manoeuvring in town and typical sports car-style high-speed steering precision. Also standard is Dynamic Damper Control: the electronically operated dampers change their characteristics according to the selected driving mode to deliver the desired vehicle dynamics. The DSC (Dynamic Stability Control) stability system includes the Anti-lock Braking System (ABS), Cornering Brake Control (CBC), Dynamic Brake Control (DBC), Brake Assist, Brake Standby, Start-Off Assistant, Fading Compensation and the Brake Drying function. The push button-activated Dynamic Traction Control (DTC) system raises the DSC thresholds, allowing some controlled drive wheel slippage for easier start-off on snow or loose ground, or for extra-dynamic cornering.

The extraordinary BMW i8 will make its world debut at the Frankfurt Motor Show and arrive in BMW showrooms in 2014.

Worldwide debut of the all-new BMW i3.

The new all-electric BMW i3 is a landmark in BMW's mission to provide a completely sustainable, electric vehicle that still stays true to the Ultimate Driving Machine moniker. The BMW i3 is the first product of the new BMW i sub-brand, and is a truly purpose built electric car. It's a new era for electro mobility at BMW.

The vehicle concept behind the BMW i3 was designed from the outset to incorporate an all-electric drive system. This has numerous advantages over "conversion" vehicles, in which the original combustion engine is swapped for an electric motor. The engineers can design whatever works best, in terms of construction, dimensions and configuration of the electric drive system's components. The car's development is dictated by the characteristics designed into the car by the development team and not by the constraints imposed by a pre-existing vehicle design. For example, the space in a conversion vehicle set aside for the fuel tank or exhaust system cannot be used. In the BMW i3 there is no need for this kind of compromise.

This leads to the LifeDrive architecture concept, which was purpose-built specifically for the BMW i3. It is comprised of two modules; the Life Module, and the Drive Module. Think of the Life Module as the passenger cabin, or greenhouse. It is the first-ever mass produced Carbon Fiber Reinforced Plastic (CFRP) passenger cell in the automotive business, and is a big factor in the cars efficiency. Carbon Fiber Reinforced Plastic is equally as strong as steel, while being 50% lighter, and 30% lighter than aluminum. The result is an electric car that weighs about 2,700 lbs (preliminary US figures).

Due to the lightweight, high tensile strength of CFRP, the passenger cell has added protection, and the battery has less work to do, which allows for the use of a smaller, lighter battery that saves even more weight, reduces charging time and increases range. The light weight design of the Life Module also lowers the BMW i3's center of gravity, making it a more engaging and dynamic car to drive.

The Drive Module, which is constructed out of 100% aluminum, consists of the 22-kWh, 450 lb. lithium-ion battery, electric drive train, MacPherson strut and 5-link rear suspension system and structural and crash components. The battery mounted in the rear, close to the drive wheels, gives impressive performance characteristics while also providing better traction.

Another benefit of the LifeDrive architecture concept is that there is no space-consuming transmission tunnel running through the center of the car, like in most internal combustion powered cars, because of the separate Drive Module. This gives the BMW i3 the interior space of the BMW 3 Series, while only having the footprint of the much smaller BMW 1 Series.

Even the vehicle's key is sustainably manufactured. The source material of the new bio-polymer key is based on castor oil pressed from castor seeds. The owner's manual is also made from renewable resources.

The interior is made using high quality renewable sources and recycled materials. The BMW i3 has the Next Premium interior, which blends sustainable resources with a premium feel for the same interior quality as the BMW 5 Series Sedan. 25% of the plastics in the interior and 25% of the thermoplastic parts on the exterior are made from either recycled materials or renewable sources.

According to studies carried out as part of BMW's Project i, involving more than 1,000 participants and conducted over some 12.5 million miles, it was revealed that the average daily distance covered was around 30 miles. The BMW i3 will be able to travel 80 to 100 miles on a single charge. This can be increased by up to approximately 12% in ECO PRO mode and by the same amount again in ECO PRO+ mode. It is able to recharge in only 3 hours with the use of a 220V Level 2, 32-amp J1772 charger. The SAE DC Combo Fast Charging, which charges the BMW i3 up to 80% in 20 minutes, and 100% in 30, can be had as an option.

In order to reduce range anxiety, a rear-mounted 650cc, 34 hp, two-cylinder, gasoline-powered Range Extender generator is available, which roughly doubles the vehicle's range. When the battery gets to a certain level, the Range Extender starts and maintains the battery's current state of charge. The Range Extender never directly drives the vehicle's wheels. The Range Extender adds roughly 330 lbs. to the vehicle curb weight and has a fuel capacity of 2.4 gallons.

Since 1999 according to the DOE, average gasoline prices in America have increased from approximately $1.136 to $3.618, or about a 218%. In the same time, the pricing of electricity has increased from 6.6 cents to 9.9 cents, a change of only 50%, making electricity a far more attractive commodity from a pricing standpoint.

BMW i3 Quick-Reference Highlights.
- Pricing (before federal or local incentives) starts at $41,350; $45,200 for Range Extender model. Destination & Handling Fee not included.
- On Sale: Q2 of 2014 in the USA.
- BMW's 360 Electric electro mobility services.
- BMW i Remote app, which connects with the car.
- BMW Navigation is standard.
- BMW Intelligent Emergency Call ('eCall"), Anti theft alarm and Rear Parking Distance Control are standard.

Driving.
- 170-hp, 184 lb-ft hybrid-synchronous electric motor with max. revs of 11,400 rpm.
- 80-100 mile real-world EV range.
- 22-kWh lithium-ion battery, which weighs 450 lbs.
- 650cc gasoline powered Range Extender optional; holds charge, doesn't power wheels.
- 0-30mph in 3.5 seconds, 0-60mph in approximately 7.0 seconds (preliminary).
- Top speed of 93 mph, electronically limited to preserve efficiency.
- BMW's signature, near-perfect 50-50 weight distribution.
- Ultra-tight turning radius (32.3 ft), which is ideal for city driving.
- Macpherson strut front and 5-link rear suspension set up.
- Single Pedal Driving Concept with Brake Energy Regeneration, which feeds power back into battery.
- 3 drive modes: Comfort, ECO PRO and ECO PRO+.
- 3 hour 220 V @32 amps charging time.
- Optional SAE DC Combo Fast Charging allows for 80% charge in 20mins; 100% in 30 mins.

Chassis and Body. - Purpose built construction. World's first mass-produced CFRP-constructed electric vehicle.
- Built on innovative LifeDrive architecture composed of two parts: Life Module and Drive Module.
- Life Module is essentially the cabin, constructed from Carbon Fiber Reinforced Plastic (CFRP).
- Drive Module is where all of the powertrain components are housed.
- Drive Module is made from 100% aluminum.
- Magnesium cross-member for instrument panel saves 20% weight vs. steel.
- BMW 1 Series external footprint with BMW 3 Series interior space.
- Adaptive Full LED headlights and LED taillights (standard in US market).
- Weighs in at roughly 2,700 lbs.(1224 kg)
- No space-consuming transmission tunnel dividing car's interior.
- Pillar-less design with rear coach doors allow for easy entry and exit to rear seats.
- Driver-oriented super-ergonomic controls.
- Three vehicle Worlds (trim levels): Mega (standard in US), Giga, and Tera.
- Standard 19-inch light alloy wheels with unique 155/70 all-season tires. 20-inch light alloy wheels optional.
- No transmission tunnel and low console allows for Slide-through Experience, which benefits urban driving by the ability to exit from the passenger side.

Sustainability.
- Made with sustainable, renewable materials.
+ Instrument panel surround and door trim use fibers from Kenaf plant.
+ Carbon fiber reinforced plastic (CFRP) roof panel is made partially with recycled CFRP from manufacturing process of other components
+ 25% of plastic used in interior comprised of recycled materials.
- Dashboard wood trim crafted from responsibly-forested eucalyptus.
- CFRP components are sustainably produced in Moses Lake, WA, USA, where the factory uses hydroelectric power.
- The Leipzig, Germany assembly plant uses wind-generated electricity.
- Olive-leaf extract is used to tan interior leather surfaces.

BMW i Ventures invests in UK EV charging firm Chargemaster

BMW i Ventures has announced a strategic investment into Chargemaster Plc, the UK’s leading provider of electric vehicle charging infrastructure. In addition to this investment, Chargemaster and BMW i have entered into a wide ranging cooperation agreement whereby Chargemaster will provide a range of E-mobility services. Both parties will carry out joint electric vehicle (EV) marketing activities and will work together to promote the advancement of EVs and E-mobility services.

Thorsten Mattig, Managing Director BMW i Ventures: “We see Chargemaster playing an important role in preparing the way for E-mobility. This investment and wide ranging cooperation agreement will accelerate our activities as well as boost the synergies with some of our already existing services and investments, such as ParkatmyHouse, where Chargemaster equipment has already been installed.”

The five year cooperation agreement between Chargemaster and BMW i aims to ensure that suitable charging infrastructure is in place for the anticipated proliferation of EVs, with both parties working to establish ChargeNow, the public charging network for BMW i owners across the UK. Chargemaster will also provide charging equipment and sites for the BMW i car sharing service DriveNow.

Both parties are working together on making EV charging as accessible to consumers as possible. This includes working with another BMW i partner, ParkatmyHouse.com (PAMH), to roll out further charging points within the PAMH estate of over 30,000 private parking locations. This cooperation extends Chargemaster’s existing work with PAMH where Chargemaster has already been equipping London PAMH driveways with charging points.

BMW i and Chargemaster will be looking to bring new innovative charging technologies to the market. Under the Agreement, the two parties will be carrying out joint EV marketing activities to promote the practical advancement of electric cars and E-mobility services.

Commenting on the BMW i Ventures investment and cooperation agreement David Martell, Chief Executive Offer of Chargemaster said: “We are delighted to welcome BMW i as investor in Chargemaster. In addition, our selection as a partner to cooperate in the provision of charging programmes to assist the rollout of E-mobility services is an endorsement of Chargemaster’s premier position in the market. We look forward to working with BMW i in this exciting and fast-growing space as we expand our operations in Europe.”

BMW i3 Pricing Announced.

BMW today announced pricing for the ground-breaking BMW i3 electric vehicle. The Manufacturer's Suggested Retail Price (without Destination & Handling) in the US will be $41,350, before any federal or state incentives. The Destination & Handling fee in the US is currently $925.

"The BMW i3 heralds the dawn of a new era for individual mobility and for the BMW Group. True to a genuine BMW, the BMW i3 has strong emotional appeal, outstanding product substance and a guarantee of sheer driving pleasure," said Ian Robertson, Member of the Board of Management, Sales and Marketing BMW. "With this leading-edge vehicle and attractive price, we will provide customers with a compelling offer for electromobility."

The BMW i3's 170 horsepower and 184 lb-ft of torque hybrid-synchronous electric motor, developed and produced by BMW, is electrified by a 22-kWh lithium-ion battery, good for 80-100 miles of emission-free driving. Designed from the ground up to be an electric car, the BMW i3 uses the Industry's first mass produced carbon fiber reinforced plastic (CFRP) passenger cell mounted on an aluminum chassis.

The BMW i3 will offer interior space comparable to the legendary BMW 3 Series on a shorter overall body. Its 32.3-foot turning circle and a relatively long wheelbase make it agile and engaging to drive, yet ideally suited to driving in dense urban areas.

Quick and convenient charging is possible either with the home charging station supplied by BMW i or at any public charging station that uses a Level 2 SAE J1772 charging system. DC fast charging, using the SAE DC Combo-Fast Charger, will be available as an option. From a public fast-charging station, it will provide an 80 percent charge from a fully depleted battery in just 20 minutes.

BMW i's commitment to sustainable urban mobility encompasses the i3 production facilities, where hydro-electric, wind and solar power are used to power the CFRP production facilities in Moses Lake, Washington and the Leipzig, Germany assembly line. Sustainable materials are also used for the BMW i3 interior upholstery and trim.

The BMW i3 will make its world debut at three simultaneous events in New York, London and Beijing on Monday, July 29. It will arrive in US showrooms in the second quarter of 2014.

BMW reveal in-depth details on i3 EV

Due it's prior to a full reveal scheduled for July 29, BMW today revealed in-depth details of it's lightweight, battery-powered i3 city car.

The BMW i3 is designed from the ground up to be powered by an electric drive system. Like the car’s unique vehicle architecture – based around the LifeDrive structure and its carbon-fibre-reinforced plastic (CFRP) passenger cell – the electric motor, power electronics and high-voltage lithium-ion battery have been developed and manufactured independently by the BMW Group under its BMW eDrive programme.

The use of lightweight CFRP for the passenger cell cancels out the extra weight contributed by the lithium-ion battery, while the low, central positioning of the battery pack enhances the car’s agility thanks to perfectly balanced 50 : 50 weight distribution. Additionally, the electric motor mounted in close proximity to the driven rear axle offers unique performance characteristics for this type of drive system as well as providing unbeatable traction.

The electric motor generates output of 125 kW/170 hp and peak torque of 250 Newton metres (184 lb-ft), which is on tap from the word go. The motor weighs just 50 kilograms and boasts power density and responsiveness unprecedented in the world of electric mobility. The specific construction of the hybrid synchronous electric motor, developed exclusively for the BMW i3, maintains a linear flow of power into the higher reaches of the rev range. The BMW i3 sprints from 0 to 60 km/h (37 mph) in a mere 3.7 seconds and 0 to 100 km/h (62 mph) in 7.2 seconds.

The single-pedal control concept in the BMW i3 – configured by the BMW Group’s drive system development engineers – also contributes to the engaging driving experience. Recuperation mode is activated the moment the driver takes his foot off the accelerator. The electric motor switches from drive to generator mode, feeding power into the lithium-ion battery. At the same time, it generates a precisely controllable braking effect. This recuperation is speed-sensitive, which means the car “coasts” with maximum efficiency at high speeds and generates a strong braking effect at low speeds.

The lithium-ion battery enables the BMW i3 to achieve a range of 130 to 160 kilometres (81 – 99 miles) in everyday driving. This rises by around 20 kilometres (12 miles) in ECO PRO mode and by the same distance again in ECO PRO+ mode. If desired, the BMW i3 is also available with a range-extender engine, which maintains the charge of the lithium-ion battery at a constant level while on the move as soon as it dips below a specified value. This role is performed by a 650cc two-cylinder petrol engine developing 25 kW/34 hp and mounted immediately adjacent to the electric motor above the rear axle. The range extender increases the car’s maximum range in day-to-day driving to around 300 kilometres (approx. 180 miles).

BMW i3 Spied Ahead Of Reveal This Month

Our spies captured the BMW i3 testing without most of its camouflage, prior to a full reveal scheduled for July 29.

The two prototypes were spotted somewhere in Southern Germany while undergoing some last-minute testing. Closely mirroring the concept's looks, the production version will certainly be an interesting appearance on public roads once it hits the market later this year.

The EV is expected to come with a rear-mounted electric motor producing 170 bhp (127 kW) and 184 lb-ft (249 Nm). It should provide a range between 88 miles (130 km) and 99 miles (160 km). The range-extending model is said to make use of a two-cylinder, 0.65-liter motorcycle engine acting as a generator. In this configuration range should be of around 186 miles (300 km).