Harvard Team develop Organic battery that costs only $US 27 / kWh

Harvard researchers have developed a battery that harnesses energy by using the electrochemistry of organic molecules rather than metals. The battery, which they say can be applied on a power-grid scale, uses naturally abundant and small organic compounds called quinones rather than electrocatalysts from costly precious metals such as platinum.

Quinones would be inexpensive to obtain and can be found in green plants or synthesized from crude oil. The battery designed by Harvard scientists and engineers used a quinone molecule that's almost identical to one that's found in rhubarb.

Unlike solid-electrode batteries, flow batteries are recharged by two chemical components dissolved in fluids that are kept in separate tanks. Flow batteries are well suited to storing large amounts of energy, but a major drawback to metal-based flow cells has been cost.

According to MIT Technology review, a conventional metal-reliant flow battery costs an estimated $700 per kilowatt-hour of storage capacity, whereas the Harvard team's metal-free technology would bring those costs down to $27 per kilowatt-hour.

"The whole world of electricity storage has been using metal ions in various charge states, but there is a limited number that you can put into solution and use to store energy, and none of them can economically store massive amounts of renewable energy," said Roy G. Gordon, one of the researchers who helped screen more than 10,000 quinone molecules to find the best candidate for the novel battery.

"With organic molecules, we introduce a vast new set of possibilities. Some of them will be terrible and some will be really good. With these quinones we have the first ones that look really good."

Source: Harvard

Maxwell & SK to Develop Integrated Lithium Ion Battery-Ultracapacitor

Maxwell Technologies announced today that it has signed a Memorandum of Understanding with SK Innovation, a subsidiary of SK Holdings and Korea's leading energy provider, to develop next generation energy storage solutions leveraging the complementary characteristics of SK's lithium ion batteries and Maxwell's ultracapacitors.

The two companies will explore and identify global commercial opportunities for products that enable enhanced functionality and improve energy efficiency in industrial, transportation and other markets. Lithium ion batteries are characterized by their high energy density, while ultracapacitors offer rapid charge and discharge capabilities, reliable performance in extreme temperature conditions and long operational life.

"As our name implies, we are seeking to move beyond the limitations of existing technologies to develop and deliver products that better meet the requirements of the most demanding energy storage and power delivery applications," said Stephen J. Kim of SK Innovation's battery division. "Our goal is to develop truly differentiated products that will create large new opportunities for both companies."

"While our respective products currently meet the needs of many applications as stand-alone solutions, Maxwell has always believed that ultracapacitors and batteries can be integrated to provide optimized products that offer the best of both worlds in terms of energy and power," said David Schramm, Maxwell's president and chief executive officer. "We are very pleased to have found a major lithium-ion battery producer in SK Innovation that is willing to invest in joint product and market exploration."

Nissan tests new Leaf battery chemistry

Nissan believes it can create a longer-lasting battery pack for its electric Leaf next year by altering the recipe used to create the component.

The proposed change in chemical composition, which is still under review at the automaker, should make the lithium ion battery more resilient to hot-weather aging, says Billy Hayes, vice president for Nissan's global electric vehicle business.

"We're working on an improved chemistry to improve the longevity of the batteries, especially in these prolonged extreme heat situations," Hayes told journalists during the Tokyo Motor Show last month.

"We're optimistic that we would use that for replacements going forward."

If approved, the new chemistry would go into production at Nissan's Smyrna, Tenn., Leaf and battery module assembly plant in the first half of 2014, he says.

Leaf owners in hot-weather markets such as Arizona and New Mexico have complained that their batteries appear to be aging faster than the manufacturer envisioned.

This year Nissan addressed the complaints by vowing to replace underperforming batteries.

Hayes says the new chemical composition will not extend the Leaf's driving range, which averages 73 miles on a single charge, according to Nissan marketing material. But he said it should delay the degradation of the battery over its lifetime.

EV batteries are produced in a baking process in which 48 modules of cells are sealed, injected with electrolyte and allowed to age.

Altering the chemicals involved can produce differences in performance, weight, cost and other characteristics.

Andy Palmer, Nissan's chief planning officer, says the Leaf battery has already gone through two other product enhancements since it entered production in Smyrna a year ago, to reduce weight and cost. He estimated that, after the expected change in chemical composition next year, it will likely see two more generations over the next two years.

Meanwhile, Nissan is working on other EV batteries, as well as other battery-powered models, Palmer says. In 2014, Nissan will introduce a lithium-powered NV200 compact cargo van. And Nissan is also studying plans to build an EV sports car based on the recently unveiled BladeGlider concept.

Japan’s Sekisui Chemical develop Silicon based 600 km range battery

Sekisui Chemical has developed a material that can triple the capacity of lithium ion batteries, allowing electric vehicles to travel about 600km on a single charge -- roughly as far as gasoline-powered cars can go without refilling.

The new material stores electricity using silicon instead of conventional carbon-based materials. The company's silicon alloy overcomes the durability issue that had kept silicon from being used.

Sekisui Chemical also developed a new material for the electrolyte, which conducts electricity within the batteries. This eliminates the need for equipment to inject liquid electrolyte into batteries, stepping up battery production by 10-fold from the current three or so per hour.

The company believes that the new material can bring battery production costs down to just above 30,000 yen ($290) per kilowatt-hour, a decrease of more than 60 percent from around 100,000 yen ($976) today, according to a report in Nikkei.

Lithium-ion batteries are a type of non-aqueous electrolyte rechargeable battery where the lithium-ion inside the electrolytes supplies the electrical conductivity. Standard models have lithium metal oxides at the positive electrode and a carbon material such as graphite at the negative electrode, and usually use electrolytic solution.

Using electrolytic solution is a barrier to ensuring the safety of the lithium-ion battery, and many research institutes are seeking to solidify the electrolytic solution, but from the perspective of performance and productivity, electrolytic solution remains the standard substance.

Sekisui Chemical, through its determined focus on using gel for electrolytes, has recently utilized new organic polymer electrolyte materials as gel-type electrolytes with high ion conductivity (approx. ten times other Sekisui Chemical products) to gain the prospect of realizing high-speed continuous production for battery cells (approx. ten times compared to other Sekisui Chemical products) and enhanced safety by using a continuous coating process rather than a vacuum infusion process. In addition, it has developed high-capacity silicon negative-electrode materials to make optimum use of this performance, realizing a high-capacity battery cell (900Wh/L).

The development of high-capacity film-type lithium-ion batteries giving practical performance while being flexible, slim, long and covering a large area has massively improved freedom in designing the shape of the final products, leading to anticipation for their use in automobiles, houses, electrical appliances and so on while gaining unprecedented lightness, space-saving (a third the size of previous products) and enhancing design through being able to be installed in any shape of form

Sekisui Chemical plans to begin sample shipments to domestic and overseas battery manufacturers as early as next summer, with mass production to kick off in 2015. It is targeting annual sales of 20 billion yen by fully entering the business of automotive battery materials.

BMW-Toyota making big steps in EV Battery technology

BMW’s head of marketing, Ian Robertson, has said the partnership between BMW and Toyota has already heralded “big steps” in battery technology,

“We’ve been genuinely impressed by the speed and quality of the learnings,” said Robertson. “The teams are working very well together. We are making some big steps, especially in battery performance and efficiency. We are now looking at how we can use the learnings together, because there’s no question they will make electric cars far more attractive.”

The two firms announced they would jointly research a lithium-air battery back in January. A lithium-air battery has its anode filled with lithium, and cathode with air. Theoretically, the battery can store more than 5,000 watt-hours per kilogram. (A123 M1 cells are around 120 wh/kg).

Ian Robertson was quoted as saying during the launch of the BMW i3 he expect the i3 to be powered by a 320 km (200 mile) range Lithium-Air Battery by 2017.

Source: Autocar

Berkeley Lab Develop Lithium-Sulfur Battery Good For 300 Mile Range

Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated in the laboratory a lithium-sulfur (Li/S) battery that has more than twice the specific energy of lithium-ion batteries, and that lasts for more than 1,500 cycles of charge-discharge with minimal decay of the battery’s capacity. This is the longest cycle life reported so far for any lithium-sulfur battery.

Demand for high-performance batteries for electric and hybrid electric vehicles capable of matching the range and power of the combustion engine encourages scientists to develop new battery chemistries that could deliver more power and energy than lithium-ion batteries, currently the best performing battery chemistry in the marketplace.

For electric vehicles to have a 300-mile range, the battery should provide a cell-level specific energy of 350 to 400 Watt-hours/kilogram (Wh/kg). This would require almost double the specific energy (about 200 Wh/kg) of current lithium-ion batteries. The batteries would also need to have at least 1,000, and preferably 1,500 charge-discharge cycles without showing a noticeable power or energy storage capacity loss.

“Our cells may provide a substantial opportunity for the development of zero-emission vehicles with a driving range similar to that of gasoline vehicles,” says Elton Cairns, of the Environmental Energy Technologies Division (EETD) at Berkeley Lab.

The battery initially showed an estimated cell-specific energy of more than 500 Wh/kg and it maintained it at >300 Wh/kg after 1,000 cycles—much higher than that of currently available lithium-ion cells.

The team is now seeking support for the continuing development of the Li/S cell, including higher sulfur utilization, operation under extreme conditions, and scale-up. Partnerships with industry are being sought. The next steps in the development are to further increase the cell energy density, improve cell performance under extreme conditions, and scale up to larger cells.

The results were reported in the journal Nano Letters, in a paper authored by Min-Kyu Song (Molecular Foundry, Berkeley Lab), Yuegang Zhang (Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences) and Cairns (Environmental Energy Technologies Division, Berkeley Lab). The research was funded by the U.S. Department of Energy’s Office of Science and a University of California Proof of Concept Award.

For a more detailed discussion of the technology, see here.

Self-healing electrodes could make li-ion batteries last 10x longer

Researchers at Stanford University and Department of Energy's SLAC National Accelerator Laboratory have made a pretty big breakthrough in lithium-ion battery technology. The team has developed a self-healing electrode using a stretchy polymer material that repairs cracks made in the electrodes caused by repeated use of the battery. This self-healing property could majorly extend the life of lithium-ion batteries in gadgets and electric cars.

The university reports, "Silicon electrodes swell to three times normal size and shrink back down again each time the battery charges and discharges, and the brittle material soon cracks and falls apart, degrading battery performance. This is a problem for all electrodes in high-capacity batteries...To make the self-healing coating, scientists deliberately weakened some of the chemical bonds within polymers – long, chain-like molecules with many identical units. The resulting material breaks easily, but the broken ends are chemically drawn to each other and quickly link up again, mimicking the process that allows biological molecules such as DNA to assemble, rearrange and break down."

The electrodes coated with the polymer lasted 10 times longer than uncoated electrodes, which could make a huge difference in battery lifetimes.

"Their capacity for storing energy is in the practical range now, but we would certainly like to push that," said Yi Cui, an associate professor at SLAC and Stanford.

The coated electrodes worked for about 100 charge-discharge cycles before starting to significantly lose their energy storage capacity, which is still quite shy of the 500 cycles for cell phones and the 3,000 cycles for electric vehicles, but the researchers say the potential is there for getting those higher cycle numbers.

The team thinks that other electrode materials could work as well, but for now they're focusing on upping the capacity and longevity of the technology.

MIT researchers find a way to boost lithium-air battery performance [VIDEO]

Lithium-air batteries have become a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges, including the need to develop better, more durable materials for the batteries’ electrodes and improving the number of charging-discharging cycles the batteries can withstand.

Now, MIT researchers have found that adding genetically modified viruses to the production of nanowires — wires that are about the width of a red blood cell, and which can serve as one of a battery’s electrodes — could help solve some of these problems.

The new work is described in a paper published in the journal Nature Communications, co-authored by graduate student Dahyun Oh, professors Angela Belcher and Yang Shao-Horn, and three others. The key to their work was to increase the surface area of the wire, thus increasing the area where electrochemical activity takes place during charging or discharging of the battery.

The researchers produced an array of nanowires, each about 80 nanometers across, using a genetically modified virus called M13, which can capture molecules of metals from water and bind them into structural shapes. In this case, wires of manganese oxide — a “favorite material” for a lithium-air battery’s cathode, Belcher says — were actually made by the viruses. But unlike wires “grown” through conventional chemical methods, these virus-built nanowires have a rough, spiky surface, which dramatically increases their surface area.

Belcher, the W.M. Keck Professor of Energy and a member of MIT’s Koch Institute for Integrative Cancer Research, explains that this process of biosynthesis is “really similar to how an abalone grows its shell” — in that case, by collecting calcium from seawater and depositing it into a solid, linked structure.

The increase in surface area produced by this method can provide “a big advantage,” Belcher says, in lithium-air batteries’ rate of charging and discharging. But the process also has other potential advantages, she says: Unlike conventional fabrication methods, which involve energy-intensive high temperatures and hazardous chemicals, this process can be carried out at room temperature using a water-based process.

Also, rather than isolated wires, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode.

A final part of the process is the addition of a small amount of a metal, such as palladium, which greatly increases the electrical conductivity of the nanowires and allows them to catalyze reactions that take place during charging and discharging. Other groups have tried to produce such batteries using pure or highly concentrated metals as the electrodes, but this new process drastically lowers how much of the expensive material is needed.

Altogether, these modifications have the potential to produce a battery that could provide two to three times greater energy density — the amount of energy that can be stored for a given weight — than today’s best lithium-ion batteries, a closely related technology that is today's top contender, the researchers say.

Belcher emphasizes that this is early-stage research, and much more work is needed to produce a lithium-air battery that’s viable for commercial production. This work only looked at the production of one component, the cathode; other essential parts, including the electrolyte — the ion conductor that lithium ions traverse from one of the battery’s electrodes to the other — require further research to find reliable, durable materials. Also, while this material was successfully tested through 50 cycles of charging and discharging, for practical use a battery must be capable of withstanding thousands of these cycles.

While these experiments used viruses for the molecular assembly, Belcher says that once the best materials for such batteries are found and tested, actual manufacturing might be done in a different way. This has happened with past materials developed in her lab, she says: The chemistry was initially developed using biological methods, but then alternative means that were more easily scalable for industrial-scale production were substituted in the actual manufacturing.

Jie Xiao, a research scientist at the Pacific Northwest National Laboratory who was not involved in this work, calls it “a great contribution to guide the research on how to effectively manipulate” catalysis in lithium-air batteries. She says this “novel approach … not only provides new insights for lithium-air batteries,” but also “the template introduced in this work is also readily adaptable for other catalytic systems.”

In addition to Oh, Belcher, and Shao-Horn, the work was carried out by MIT research scientists Jifa Qi and Yong Zhang and postdoc Yi-Chun Lu. The work was supported by the U.S. Army Research Office and the National Science Foundation.

Graphene Supercapacitors Ready For Electric Vehicles

Automakers are always searching for ways to improve the efficiency, and therefore the range, of electric vehicles. One way to do this is to regenerate and reuse the energy that would normally be wasted when the brakes slow a vehicle down.

There is a problem doing this with conventional batteries, however. Braking occurs over timescales measured in seconds but that’s much too fast for batteries which generally take many hours to charge. So car makers have to find other ways to store this energy.

One of the more promising is to use supercapacitors because they can charge quickly and then discharge the energy just as fast.

Researchers at the Gwangju Institute of Science and Technology in Korea say they have developed a high-performance graphene supercapacitors that stores almost as much energy as a lithium-ion battery, can charge and discharge in seconds and maintain all this over many tens of thousands of charging cycles.

The Koreans say they have perfected a highly porous form of graphene that has a huge internal surface area. This is created by reducing graphene oxide particles with hydrazine in water agitated with ultrasound.

The graphene powder is then packed into a coin-shaped cell, and dried at 140 degrees C and at a pressure of 300/kg/cm for five hours.

The resulting graphene electrode is highly porous. A single gram has a surface area bigger than a basketball court. That’s important because it allows the electrode to accomodate much more electrolyte (an ionic liquid called EBIMF 1 M). And this ultimately determines the amount of charge the supercapacitor can hold.

Santhakumar Kannappan at the Gwangju Institute of Science and Technology have measured the performance of their supercapacitor at a specific capacitance of over 150 Farrads per gram that can store energy at a density of more than 64 Watt hours per kilogram at a current density of 5 Amps per gram.

That’s almost comparable with lithium-ion batteries which have an energy density of between 100 and 200 Watt hours per kilogram.

These supercapacitors have other advantages too. Kannappan and co say they can fully charge them in just 16 seconds and have repeated this some ten thousand times without a significant reduction in capacitance. “These values are the highest so far reported in the literature,” they say.

Tesla plans ‘giga factory’ for EV battery pack manufacture

Tesla Motors is considering plans to create a "giga factory" to manufacture electric vehicle battery packs for the automaker's consumption, Tesla CEO Elon Musk said.

Musk said Tesla's long-term ambitions to build 500,000 electric vehicles annually could chew up the vast majority of current lithium ion battery supplies globally for all industries, including computers and cell phones.

Musk said the Tesla plant would be "something comparable to all lithium ion production in the world, in one factory."

Musk declined to give a timeframe for the plant, but with the smaller Gen III cars slated to arrive in 2017 with a $35,000 price point, Tesla production should ramp up rapidly.

"If we were to produce 500,000 cars, we need cell capacity commensurate with that. That might be more, or at least on par with, all lithium ion production in the world today. We're in the process of figuring that out. There might need to be some giga-factory built," Musk said in a conference call with analysts.

Musk foresees such a plant that would take "raw materials to finished packs, with partners, in North America.

"Raw materials are not an issue. I would not worry about lithium supply. The main constituents, by weight, are nickel, cobalt, aluminum, then lithium," Musk said, adding that the plant would be, "a green factory, a lot of solar power. No toxic elements are going to come out of this plant."

Tesla recently inked a deal with Panasonic to update and expand their 2011 arrangement to now supply nearly 2 billion cells over the course of four years.