Bosch choose Tesla Model S for autonomous drive testing [VIDEO]

As we reported a month ago, Bosch has confirmed they are working with Tesla to develop automated driving systems for production vehicles.

Spotting a test vehicle, equipped as they are with measurement devices, sensors, and instruments, is usually pretty easy. But that’s not the case for the new Model S Teslas that recently joined the Bosch fleet. Both these test vehicles are helping engineers further refine automated driving. But at first glance, it’s hard to tell them apart from production models. “Bosch is developing automated driving for production vehicles of all kinds,” says Dr. Dirk Hoheisel, member of the Bosch board of management. The new test vehicles are evidence of the progress Bosch has already made in integrating the necessary systems and components. Those attending the 62nd International Automotive Press Briefing can see this for themselves in Boxberg, Germany, from May 19 to 21, 2015

Fit for highly automated driving after 1,400 hours of work

To make the test vehicles ready for automated driving, they first had to be retrofitted. Fifty new Bosch components were installed in each car. They included a stereo video camera (SVC), which the car uses to recognize lanes, traffic signs, and clear spaces. The Bosch SVC is the smallest stereo camera system for automotive applications currently available in the market. Its compact design makes it easy to integrate into vehicles. In addition to the camera, 1,300 meters of cable were laid in each car and fixed in place with 400 cable ties. “After some 1,400 hours of work on each of them, the test vehicles are ready for highly automated driving,” Hoheisel says. Thanks to Bosch technology, the two Teslas can now autonomously drive from on-ramp to off-ramp without the driver needing to constantly monitor them.

This transfer of responsibility from the driver to the vehicle explains why so much time and effort is necessary for the retrofit. Highly automated vehicles must be capable of operating safely even if a component fails. The only way to achieve such operational reliability is by a design strategy that includes redundancy in safety-critical systems such as braking and steering. For example, both test vehicles feature both the iBooster electromechanical brake booster and the ESP braking control system. These Bosch components can brake the car independently of each other, without any need for driver intervention. “For Bosch, the principle here is safety first,” Hoheisel says. Back-up systems are also available for the two test vehicles’ power supply and vital ECUs.

Several thousand test kilometers driven without a hitch

Since 2011, Bosch has had two teams – on two continents – working on automated driving. At the Abstatt location in Germany, Bosch engineers are working on system integration. Their colleagues at Palo Alto in California’s Silicon Valley are driving forward work on function development. The two teams receive support from roughly 2,000 driver-assistance engineers who work for Bosch around the world. To make it as easy as possible for the two teams to share their results, Bosch uses identical test vehicles. Hoheisel explains why Bosch opted for two all-electric Model S vehicles made by the U.S. automaker Tesla: “They combine two automotive industry trends: electrification and automation.” This presents a particular challenge, he says, but one that Bosch relishes.

Bosch started testing automated driving on public roads at the beginning of 2013. So far, it has been using test vehicles based on the BMW 325d Touring. Engineers have successfully driven them for several thousand kilometers on freeways – both the A81 near Stuttgart and the I280 in California. Before the first test drives, the German certification authority TÜV Süd reviewed the safety concept that Bosch had prepared specially for the purpose. And even though the technology on board the vehicles is designed to handle any situation in freeway traffic, the drivers at the wheel have been specially trained. Bosch’s test drivers not only know the safety precautions inside out, but have also completed a multi-day training course.

2016 BYD e6 to get 82 kWh battery and 400 km Range

The 2016 BYD e6 will have 400 km (250 miles) range thanks to an increase in battery capacity to 82 kWh, according to a document from China’s Ministry of Industry and Information Technology.

Compared with the current model, the 2016 e6 will be 40 kg heavier from 2380 kg to 2420 kg with range increased by 100 km from 300 km to 400 km.

The 82 kWh battery pack, up from 60 kWh in the current model, is 100kg heavier (700 kg) with a claimed cell energy density of approx 150 Wh per kilogram.

The e6 was originally launched five years ago in May 2010. The first batch of 60 e6s were delivered to a taxi company in Shenzhen. Deliveries to individual buyers started in 2011 with annual sales of 1,544 in 2013 and 3,560 in 2014.

The 2016 e6 will be launched in late 2015. Prices will remain unchanged between 300,000 Yuan and 370,000 Yuan before rebates.

BMW and SCHERM Group launch 40-ton electric truck pilot project

The BMW Group is partnering with logistics company SCHERM Group to deploy a 40-ton pure-electric truck in the city this summer and become the first automobile manufacturer in Germany to use an electric truck of this size to transport materials on public roads.

The innovative traction vehicle, which is licensed for use on public roads, will be deployed as of this summer for just-in-time material transport over short distances. The electric truck will drive between the logistics company SCHERM Group and the BMW Group Plant Munich eight times a day, covering a distance of almost two kilometres one-way. Thanks to its alternative drive train, the truck is quiet, CO2-free in traffic and generates virtually no particle pollution for the environment. This is also reflected in the vehicle’s overall assessment in comparison with a truck with diesel engine: The environmentally friendly truck will generate 11.8 tons less CO2 per year – equivalent to a BMW 320d Efficient Dynamics driving almost three times around the world.

“Just under two years ago, our BMW i brand put sustainable mobility on the road. This pure electric truck signals that we are constantly working on innovative solutions and tackling logistics challenges,” says Hermann Bohrer, director of BMW Group Plant Munich. “We are therefore delighted with the cooperation with SCHERM.”

The BMW Group and SCHERM Group are investing a six-figure amount in the pilot project, which will initially span one year. If the vehicle proves itself in everyday driving conditions, both partners will seek to expand the project.

“After a long search, we have found an electro-mobility solution for the transport sector,” explains Rainer Zoellner, “e-truck” project manager at SCHERM Group. “We are certain to gain valuable experience with the BMW Group from this pilot project.”

The BMW Group pursues a holistic approach focused on implementing sustainability throughout the value chain. In addition to future-oriented mobility solutions, issues such as corporate environmental protection, efficient use of resources and reduction of CO2 emissions are firmly rooted in company strategy. Since 2014, the BMW Group has sourced more than half its global electricity needs from renewables.

SCHERM Group is an international systems provider offering solutions for the logistics, transport, real estate and service sectors. As a provider of services for the entire value chain, the company employs a workforce of around 2,000 employees at 14 locations and on a mobile basis in around 500 company-owned trucks. Sustainability is an important factor the company has defined as a fundamental value.

Aston Martin DBX SUV to go into production in 2019

Aston Martin has announced a production version of the all electric DBX SUV concept will enter production and be on sale by 2019.

In a statement issued last night, Aston’s boss Andy Palmer announced his company had raised the £200m from its two majority shareholders to begin work on creating a production version of last month’s Geneva motor show concept.

“The additional investment announced today will allow us to realise the DBX and other new luxury vehicles that will form the strongest and most diverse portfolio in our history”. Said the Aston CEO.

The DBX Concept is an all-wheel drive crossover high luxury GT that uses in-board electric wheel motors at all four corners powered by lithium sulphur cells. Steering is a drive-by-wire system and both the driver and passenger have head-up displays surrounded by auto-dimming ‘smart glass’.

Chevrolet-FNR autonomous EV concept

Chevrolet has created a vision of what it thinks a full autonomous all-electric vehicle of the future might look like.

Created by GM’s Pan Asia Technical Automotive Center the Chevrolet-FNR is an autonomous electric concept vehicle that boasts a futuristic capsule design. It has crystal laser headlights and taillights, dragonfly dual swing doors.

The Chevrolet-FNR features an extremely aero design focused on low drag powered by AWD magnetic hubless electric wheel motors along with autonomous wireless charging. A laundry list of imaginary specification like range and power output has been provided.

The Chevrolet-FNR is loaded with a range of sensors like roof-mounted radar that can map out the environment to enable driverless operation, Chevy Intelligent Assistant and iris recognition start. The Chevrolet-FNR can also serve as a “personal assistant” to map out the best route to the driver’s preferred destination.

In self-driving mode, the vehicle's front seats can swivel 180 degrees to face the rear seats, creating a more intimate setting. The driver can switch to manual mode through the gesture control feature.

ELMOFO Electric Radical maiden quarter mile pass [VIDEO]

In a demonstration run during the Mighty Car Mods Nationals at Sydney Dragway the ELMOFO Electric Radical made it's maiden run down the quarter mile achieveing at time of 10.922 seconds @ 131.25 Mph (211.24 km/h).

The EV Radical SR8 is designed for circuit racing and has the distinction of being the first electric car to win a race against petrol vehicles in a sanctioned event. The ELFOMO Racer has a peak output of 300 Kw / 600 Nm from twin Remy based BLDC permanent magnet motors with energy fed from a 30 kWh KoKam Li-Po battery pack via two RMS inverters.

This was the cars first run down a quarter mile and the 10s time was achieved with worn rain tires and gearing more suitable to circuit racing (top speed of 270 km/h). With lower gearing and heated slick tires ELMOFO could be knocking on the door of a 9 second pass. Even with the current set-up, ANDRA officials started to warn the team the car is close to requiring a parachute if it runs much faster.

Toroidion Launch 1MW AWD electric supercar in Monaco [VIDEO]

Finnish startup Toroidion has launched their all-electric megacar at the Top Marque show in Monaco. The Toroidion has 1341 hp total and a swappable battery.

With 2x 200 kw at the front and 2x 300 kw direct drive in-board wheel motors at the rear, the Toroidion 1MW Concept, built by designer Pasi Pennanen, was created to be an electric car that can compete in the GT classes at the 24 Hours of Le Mans.

Source: Toroidion