BMW i3 to have 200 Mile Lithium-Air Battery by 2017 [VIDEO]

At the recent launch of the BMW i3 lithium-ion battery-electric car, BMW board member Ian Robertson said that in the next three to four years there will be more progress in battery development than in the previous 100 years. He said electric cars will have batteries with twice the current power within four to five years, which will double the range.

We reported back in January that Toyota Motor Corp and BMW AG agreed to jointly research a lithium-air battery. Lithium-air battery has its anode filled with lithium, and cathode with air.

Lithium metal-air batteries can store more than 5,000 watt-hours per kilogram. (A123 M1 cells are around 120 wh/kg) That's more than forty-times as much as today's high-performance lithium-ion batteries, and more than another class of energy-storage devices: fuel cells.

The reduction in battery mass is achieved by eliminating the need for a second reactant inside the cell. Lithium metal batteries react with oxygen in the air that is pulled in through a 'breathing' casing, making them lightweight and compact.

The technology is being studied by researchers including IBM , which is working to develop a lithium-air battery that will let electric vehicles run 500 miles on one charge.

Given the recent new that General Motors is working on an EV that can go 200 miles (320 km) per charge at a cost of about $30,000 to compete with Tesla's as yet un-named 200 mile $30,000 EV due in approx three to four years, the 2016/17 model year promises to be a very exciting year for affordable, long range electric vehicles.

Tesla Model S is Norway’s top-selling car in September

The newly landed Tesla Model S, after a market presence of less than two months, has already topped Norway’s best-sellers' list during the opening two week’s of this month, comfortably outselling all other cars, regardless of fuel type, accounting for 6.2 per cent of all the new cars sold in Norway.

Hot on the heels of recording 184 registrations in its debut month in Norway, registrations of the Model S in Norway hit a chart-topping 322 units to bulldoze Volkswagen’s conventionally powered Golf (256 units) out of first place by a substantial sales margin, according to AID compiled data.

The number eight slot went to Nissan’s LEAF, Norway’s most popular electric car so far this year. Both fully-fledged electric cars have captured a combined market share of 9.1 per cent.

1) Tesla Model S – 322
2) Volkswagen Golf – 256
3) Toyota Auris
4) Mazda CX-5
5) Volvo V40
6) Skoda Octavia
7) Toyota RAV4
8) Nissan LEAF

Dutch Students Break EV Acceleration Record 0-100 km/h in 2.13 sec [VIDEO]

Dutch students today reset the Guiness world record for acceleration 0-100 km/h, in the category for electric cars. The Delft University of Technology Racing Team used their 2012 All-Wheel-Drive 148 kg Formula Student DUT12 to accelerate from zero to 100 km/h in just 2.13 seconds at Valkenburg Airport.

The Formula SAE car has a four wheel drive powertrain with a 26 kw / 27 Nm motor driving each wheel giving a total peak power output of 104 kw. The front motors are out-board and drive through a 1:7 Planetary gear system. The rear motors are in-board and drive the wheels via a 1:13 two-stage spur gear system with carbon fiber half-shafts.

The Delft Team first prepared the ground by pouring a solution of sugar in water over the track, and heating it with a gas-burner. All rubble was removed and a plastic sheet was put over the track to keep it dry. Additionally, tire warmers were used on the car, the driver was the team's lightest member, Marly Kuijpers, and the the run was repeated ten times with traction control and tire slippage tweaked within the four motor controllers via the CAN bus ECU for each run.

The team says that rule changes make 2013 and 2014 Formula Student cars less likely contenders for future acceleration records. For one thing they will have high downforce wings, which add drag, and larger batteries, adding weight. The heavier machines are unlikely to reach a new record, so Delft may well hang on to the top spot longer than another student team, which held its record just over a year.

Buckeye Bullet 3 Delayed in Bid to become first 400 MPH EV [VIDEO]

The Buckeye Bullet is a collaboration between Ohio State University and Venturi, and although due to the flooding of Bonneville salt flats (Utah, USA), the FIA and the organizers of the world speed records program decided to cancel the competition for this year, the team were targeting a 400 MPH (640 km/h) world land speed record for electric cars.

The car, called VBB-3, is actually the third “Buckeye Bullet” land speed record car. Driver Roger Schroer took the VBB-2.5 to 307.58 mph in 2010, giving him the current FIA world record.

VBB-3 is powered by four electric motors, which generate 400 horsepower each (750 hp Peak) with energy storage provided by 2,000x prismatic A123 batteries that weigh 1600 kg. The 3.2 ton Carbon fiber skinned vehicle can output a total of more than 2 Megawatts (3,000 hp) which, when combined with a drag co-efficient of only 0.13, the team hope is sufficient to re-write the EV Land Speed Record.

To break the record, the electric car must travel at least one mile and average two runs within an hour. The student team hopes that the new car will break 400 mph, something no electric car has achieved, but this will now have to wait till 2014.

BMW Begins Production of i3 Electric Car [VIDEO]

Assembly lines in Leipzig, Germany, today began turning out BMW AG’s new i3 electric car, which is scheduled to arrive in U.S. dealerships in the second quarter of 2014.

The i3 opens a new frontier for BMW, which has long been known for turning out big, powerful, gasoline-powered vehicles that while fairly efficient, did not rely on their “green” qualities as selling points.

The i3 also marks a departure in design and structure for BMW because the i3s body is made of carbon-fiber reinforced plastic, or CFRP. The strong, light material allows the car to accommodate the weight of its batteries and electric-drive system without becoming excessively heavy. The company said the car will deliver the kind of sporty, fun-to-drive performance customers expect from BMW cars.

Chevrolet Spark EV Driving 101 [VIDEO]

Car reviewers describe the all-new 2014 Chevrolet Spark EV as “fun,” “spunky” and a “hoot to drive.” With 130hp and 400 lb-ft of instant torque, the all-electric mini-car can go from 0 to 60 in less than 7.6 seconds.

“Spark EV is the new benchmark for electric cars aimed at urban driving and a kick in the pants to pilot around town,” said Lindsay Brooke, senior editor, SAE International magazines. “Spark EV owners who are new to all-electric driving will soon find out how difficult it is to hide their silly grin when they realize how far that car will take them for pennies on the dollar.”

For many Spark EV owners, getting plugged-in to an all-electric, no-gas-required lifestyle will be a new experience.

Here are a few tips to ease the transition:

  • Recharge daily – And do it quicker with the soon-to-be-available SAE combo charger for DC fast charging. It can recharge the 21-kWh lithium-ion battery pack to 80-percent capacity in 20 minutes.

  • Extend range – Maximize the mini-car’s EPA-estimated 82 miles (130 km) of driving range by recharging in public charging stations, or use Spark EV’s standard 120V cord in any outlet.

  • Don’t be a juice hog – Public charging stations are in high demand. After charging, move on so that other EV owners can recharge. Or if parking conditions allow, place a note on your dashboard saying it’s okay to unplug your car if the Green Light indicating a full charge is flashing.

  • Know the distance – The available BringGo smartphone app can help Spark EV owners know how far they can go without recharging by providing full-function, in-dash navigation via Chevrolet MyLink as well as live traffic updates, for less than $60.

  • Go with the flow – Many EV owners like to maximize range by driving at or below the speed limit. No problem, just steer clear of the fast lane so other Spark EV drivers can enjoy their instant torque.

  • Be loud – The Pedestrian Friendly Alert Function projects a light chirp and calls attention to Spark EV’s presence. Pulling the turn signal lever back while in Drive will give a friendly honk. The alert can be set to activate automatically in Drive and Reverse at speeds below 18 mph (28 km/h).

  • Enjoy the savings – Spark EV can save its owners approximately $9,000 in fuel over five years compared to the average new vehicle – that’s $150 per month that can be spent on something else.

  • Be an EV advocate – Expect to get lots of questions about Spark EV. Take these opportunities to spread the advantages of going gas free.

    Expanding the Spark lineup, the 2014 Chevrolet Spark EV is designed to make the trip as electrifying as the destination. It is priced under $19,995 with tax incentives and is now available to residents in California and Oregon, with sales expanding to Canada, South Korea and Europe later.

  • Panasonic Ene-1 GP Suzuka KV-40 Challenge [VIDEO]

    The "2013 Ene-1 GP SUZUKA" next-generation electric energy car event was held last month at Suzuka Circuit.

    It was sponsored by Land Mobility Inc, owner of Suzuka Circuit, and Panasonic was an official partner of the event.

    Panasonic promoted its "KV-40 Challenge" where cars were powered on 40x AA rechargeable nickel-metal hydride (NiMH) batteries. In this challenge, teams were invited to independently produce single-seater electric vehicles, powered by EVOLTA batteries, and complete 3 laps around the 5.8 km Suzuka circuit which features a maximum elevation change of 50 meters.

    75 teams from all over Japan participated, ranging from junior high school teams to serious hobbyists, with average speeds on the track reaching up to 60 km/h and it was noted that driving skill definitely played a large part in participant success.

    The winner of the time trial was "Ahiru-Ecopa Racing Togo" team.

    GM Working on $30,000 EV with 200-Mile Range

    As automakers race to make cheaper electric cars with greater battery range, General Motors is working on one that can go 200 miles per charge at a cost of about $30,000, a top company executive said.

    Vice President of Global Product Development Doug Parks wouldn't say when or if such a car will be built, however.

    Currently GM sells the $35,000 Chevrolet Volt plug-in hybrid, which can go 38 miles on electricity before a gas-powered generator kicks in. It also offers the all-electric Chevy Spark subcompact that can go 82 miles on a charge. It starts at $26,685. Electric cars are eligible for a $7,500 federal tax credit.

    The 200-mile car would cost about the same as the current Volt, and it would match the range and be far cheaper than Tesla Motors' $71,000, all-electric Model S. The Model S can go up to 265 miles on a single charge.

    A moderately priced electric car with a 200-mile range would make electric cars more appealing to Americans, solving the two chief complaints about such cars: Anxiety over running out of power and high price, said Tom Libby, lead North American analyst for the Polk automotive research firm.

    "That would be a huge step forward, no question," he said.

    Currently, cars powered solely by batteries make up only 0.3 percent of U.S. sales, Libby said, but he's confident that would increase if an automaker came out with a moderately priced 200-mile car.

    Tesla gets accolades for the Model S, including the highest test score ever recorded by Consumer Reports magazine. And the Palo Alto, Calif., company also is working on a mass-market electric car. CEO Elon Musk has said it will have around a 200-mile range and cost about $35,000. It could go on sales as early as the end of 2016, he has said.

    GM has taken a different approach from Tesla, Parks said, pricing electric vehicles from around $25,000 to about $40,000. They don't go as far after each charge, which has kept battery costs down and made the cars more affordable, he said.

    "Their pricing is up there for a real unique customer," Parks said of Tesla. "The real trick will be who can do a 200-mile car for more of the price range I'm talking about. We're all in races to do that."

    The 200-mile car won't be the next-generation Volt. Speaking at a Monday event to show off GM's expanded battery laboratory at its technical center in Warren, a suburb north of Detroit, Parks said that GM engineers are now working on a new Volt, which will go a little father on electricity than the current model and cost a little less. He wouldn't say when it will arrive in showrooms or how much it will cost.

    GM on Monday showed off a 50,000-square-foot addition to the battery lab. The added space, which nearly doubled the lab's size, will let the company test batteries and computer controls much faster than before. Parks said the goal is to develop electric cars twice as fast as the company could in the past. It took GM about four years to develop the Volt and bring it to market.

    Solar Cars improve the breed

    A famous quote from Soichiro Honda, the legendary founder of Honda Motor Company, says “Racing improves the breed”. There's no doubt many Formula One teams have used the phrase to imply a legitimate link between innovations made in racing that eventually benefit us all as the technology from top-level motorsport filters down into road cars, although it would be hard to convince anyone of a practical use for an off-throttle blown diffuser in a hatch back.

    Likewise solar racing cars have made significant contributions that have lead to today's current crop of mass produced Plug-In electric cars. It all started with the winning vehicle of the very first World Solar Challenge in 1987. GM's Sunrayer was designed by Hughes Aerospace, (the company originally founded by Howard Hughes) at the time a division of General Motors, in collaboration with a smaller aerospace company called AeroVironment.

    More than a dozen Caltech graduates participated in Sunrayer programs at AeroVironment, the most deeply involved was Alan Cocconi who was responsible for the power electronics systems. This included everything from motor controller through battery management to telemetry.

    The Cocconi designed MOSFET based three phase AC motor drive inverter ran a 92% efficient 10 hp (peak) motor that drove the left rear wheel of Sunraycer via a cogged belt.

    Sunraycer won Pole with a top speed of 109 km/h and lead the 24 car field from start to finish covering the 3,005 km route at an average speed of 66.9 km/h (41.6 mph), 50% faster than 2nd place.

    Following the World Solar Challenge success, in early 1988 GM insiders proposed the idea of making a very efficient EV with the knowledge gained from Sunraycer but to make it an affordable car with decent range and performance equal to a petrol powered car. Work soon begins at AeroVironment on the 'Impact' based around a 15 kWh Lead Acid battery pack, Al Cocconi again responsible for power electronics design.

    The Impact EV concept car was launched at the LA Auto Show in Jan 1990 and the car so well received that by April GM announced the car would go into production. The Alan Cocconi designed motor controller for the Impact, a direct descendant of that used in Sunraycer, were refined by Hughes Electronics and went into the GM EV1 when production started in 1996.

    Based on his work to date, in 1992 Alan Cocconi founded AC Propusion to produce electric vehicle drive systems featuring high performance, high efficiency induction motors and integrated high power battery charging. The original test bed was a not too glamorous Honda Civic but once the powertrain design was debugged, a Piontek Sportech kit car chassis, originally designed for a Suzuki GSX-R motor, was converted into an EV sports car called t-zero.

    Launched in 1997, the 1040 kg t-zero, powered by 28x lead acid batteries, started to make headlines with it's 0 to 100 km/h in 4 seconds levels of performance. By 2003 the car had been upgraded with 6,800x 16850 Li-ion cells with a single charge range of 480 km, a 320 kg reduction in kerb weight and 0-60 times reduced to a supercar beating 3.2 seconds.

    If some of these specs sound similar to the Tesla Roadster, that's because the Roadster was developed by Tesla Motors to mass-produce AC propulsions t-zero, the first EV to demonstrate the performance and range potential of lithium ion batteries and the car that can legitimately be credited with inspiring today's mass produced plug-In electrics from GM, Nissan, Mitsubishi etc. In fact Tesla Motors was founded to commercialise Alan Cocconi's work and the Tesla Model S uses technology licensed from AC Propulsion.

    Today's solar racers are still blazing a trail years ahead of the automotive industry, witness BMWs i3 Electric car, the first all carbon fibre production car. In the area of powertrains, every WSC winner since 1999 has used direct drive in-wheel motors (road car in-wheel motors are currently being developed) and surely in won't be much longer before the 12.5% of Australian homes that have roof-top PV systems installed realise they already have the infrastructure in place to solar power a plug-in electric vehicle for their daily commute?

    This year’s Bridgestone World Solar Challenge is held from 6th – 13th October. If you can’t make it to Darwin or Adelaide, you can follow the race on Twitter via @tsport100 or @WorldSolarChlg.

    Disclosure: Post is sponsored by Bridgestone World Solar Challenge. Words and thoughts are entirely my own.