All-electric 4-motor SH-AWD NSX EV Concept to race @ Pikes Peak

Acura will field a pair of 2017 Acura NSX supercars in the 100th Anniversary of the running of the Broadmoor Pikes Peak International Hill Climb on June 26, marking the North American racing debut of Acura's next-generation NSX: the pinnacle expression of Acura Precision Crafted Performance and the only supercar made in America.

The two Acura NSX supercars will compete in the Time Attack 1 and 2 classes and will be piloted by brothers James and Nick Robinson, respectively, both from the company's North American engineering team. In addition, Acura will campaign an NSX-inspired prototype vehicle in the Electric Modified Class, featuring a further evolution of the experimental all-electric, 4-motor Super Handling All-Wheel Drive (SH-AWD) powertrain that won last year's Pikes Peak Challenge Exhibition class.

"Pikes Peak is like no other race in the world and offers a unique opportunity to showcase the power and performance of our products," said Jon Ikeda, vice president and general manager of the Acura Division. "We are excited for this year's 'Race to the Clouds' to test the endurance and engineering of the Acura NSX and our advanced powertrain technologies – as well as an expression of our racing spirit."

A team of North American R&D engineers has been working on both NSX entries, which feature the same three-motor Sport Hybrid Super-Handling All-Wheel Drive powertrain (Sport Hybrid SH-AWD) as the production NSX. This powertrain features a twin-turbo V6 engine mated to a 9-speed dual clutch transmission and Rear Direct Drive Motor, and a front Twin Motor Unit with a world's first electrically powered torque vectoring capability in the supercar realm. Modifications to the NSX competing in the Time Attack 1 class included chassis lightening and a custom high-flow racing exhaust.

The NSX competing in the Time Attack 2 class is a production car with the required safety equipment for competition. The Time Attack 1 NSX will be driven by James Robinson of the company's North American powertrain development group, who drove a first-generation NSX in the Pikes Peak Hill Climb from 2012 to 2015. His brother Nick Robinson, an engineer in charge of the new NSX's dynamic performance during its development, will drive the Time Attack 2 NSX. Nick is also the reigning PP250 winner from the 2015 Pikes Peak Hill Climb.

The supercar-inspired 4-Motor EV Concept will be driven by Tetsuya Yamano, who campaigned last year's CR-Z-based electric prototype. The EV Concept is the ultimate embodiment of the all-wheel-drive Electric SH-AWD powertrain featuring a world's first technology that enables four-wheel independent torque allocation. The Electric SH-AWD powertrain, an evolution of the CR-Z prototype powertrain, produces three times the total system output of last year's electric prototype and is mated to the NSX body.

As Official Pace Car sponsor, Acura will feature three pace cars – the NSX, the seven-passenger MDX performance-luxury SUV and the TLX sports sedan. President of Polyphony Digital and Producer of the Gran Turismo series Kazunori Yamauchi and Pikes Peak legends Randy Schranz and Leonard Vahsholtz will lead the field of 100 entrants to the top of the 14,115-foot Colorado peak.

For Pikes Peak race attendees, the NSX and other pace cars will appear at a number of pre-race activities, including the popular Fan Fest in downtown Colorado Springs, 5 to 10 p.m. MDT Friday, June 24.

CHAdeMO Announce 150 Kw Supercharging Protocol

During CHAdeMO’s annual General Assembly in Tokyo, Japan, the Association’s management has announced its plans and ongoing activities towards bringing high power CHAdeMO chargers to the market.

The Association plans to release an amendment to the current protocol, which will enable charging with up to 150kW (350A), this year. The revision of the protocol, announced to the Regular Members already last year, is still ongoing with technical consultations with members happening both in and outside of Japan.

CHAdeMO’s Secretary General Dave Yoshida said: “One of the purposes of the Association is to evolve CHAdeMO protocol so that it can better respond to market needs. We see a movement towards mass market EVs with higher capacity batteries and we, as the Association of fast charging protocol, prepare for it by working on the high power protocol. This will enable faster deployment of the high power charging infrastructure, in preparation for EVs that can charge with higher power.”

Recognising that the upward trend in EV autonomy will lead to a need for charging with higher power at key locations, especially along the motorways, CHAdeMO mandated its Technical Work Group to tackle issues such as the size of the high power cable or managing temperature increase of the charger that may come in contact with users.

The ‘plug’ itself will remain exactly the same as the current one, meaning the high power CHAdeMO chargers can feed power to both the current EVs as well as the upcoming EVs with higher battery capacity. Current CHAdeMO EVs will also be able to use the 150kW charger, but as today’s EVs are configured to charge at around 50kW, they will charge at the current speed.

Dave Yoshida added: “We are very pleased that, thanks to the hard work of our technical team, we will soon be able to release the new version of the protocol to our members. We expect first 150kW standardised chargers to be deployed in 2017.”

CHAdeMO technical representatives are also actively involved in the IEC Committee working on high power charging, where, together with other international experts, they are preparing a revision of the DC high power standards, based on the IEC standards published in 2014.

In terms of higher power, for example 350kW (1 000V x 350A), technical studies are ongoing and the Association will determine its further development around 2018, should there be market demand.

Peugeot / Citroen unveil new electrification platform [VIDEO]

PSA Group unveiled their electrification strategy plans at the “Innovation Day” event. PSA Group is consolidating the development of its new electrification strategy on two global modular platforms, which will allow it to offer a wide range of internal combustion, electric and plug-in hybrid petrol models as from 2019. Both platforms will be compatible with the manufacturing resources put in place as part of the Plant of the Future programme.

The Common Modular Platform (CMP), which was developed in partnership with DFM (Dongfeng Motors), is dedicated to compact city cars, core sedans and compact SUVs. The all-electric e-CMP format co-financed by PSA Group and DFM will allow the two parties to offer a new generation of spacious, multi-purpose electric vehicles with a driving range of up to 450 km and ultra-fast charging solutions providing up to 12 km of driving per minute of charging. Four electric models will be introduced by 2021, the first of which will reach the market in 2019.

The Efficient Modular Platform (EMP2), which is dedicated to compact and premium models, was launched first in 2013 with the new Citroën C4 Picasso and Peugeot 308 and then in 2014 in China. From 2019 onwards, its innovative design will enable the deployment of the first plug-in hybrid petrol models equipped with the best of hybrid technology:

  • SUVs and CUVs with high-performance electric four-wheel drive
  • 60 km driving range in all-electric mode
  • a large interior that does not compromise on passenger comfort or boot space
  • leading-edge fuel efficiency in urban driving conditions (40% efficiency gains versus internal combustion models)

    To facilitate use, the plug-in hybrid models will come with a four-hour charging system as well as an optional feature for recharging the battery more quickly, in less than two hours. Seven plug-in hybrid vehicles will be gradually introduced between 2019 and 2021.

    On Innovation Day, Gilles Le Borgne said: "These next-generation hybrid and electric technologies will complement our range of internal combustion engines, thereby enabling PSA Group to offer its customers a diversified line-up of technologies that meet all of their mobility needs. This innovative strategy clearly demonstrates the Group's commitment to global, sustainable solutions that will allow us to take on the energy transition challenge."

  • 2017 BMW i3 goes 180 km with new 33-kWh battery

    Today BMW announced that BMW i will offer a new model range of its compact electric car, the BMW i3 and from the 2017 model year will be offering a new version with more than 50% increased battery capacity. The 2017 BMW i3 (94 Ah) has a capacity of 33 kilowatt hours (kWh) thanks to the higher energy density of the lithium ion cells.

    The BMW i team worked to ensure that the battery dimensions remain unchanged while still offering a significant range increase. Even in everyday conditions, the new Battery Electric BMW i3, in varying weather conditions and with the air conditioning or heating turned on, a range of up to 114 miles combined1 (hwy/city) is possible as shown by independent BMW testing cycles. The driving performance figures of the 170 hp AC synchronous electric motor remain virtually unchanged. The motor propels the BMW i3 from 0 to 60 mph in just over 7 seconds.

    This makes the BMW i3 both the sportiest and most efficient electric vehicle in its segment with an expected EPA electricity consumption of 27 kWh/100mi. In addition to the Battery Electric BMW i3, the Range Extender model will also feature the 94 Ah battery. When equipped with the Range Extender, if the driver requires additional range, the 2-cylinder gasoline engine is switched on once the battery is depleted to 6.5% state of charge and keeps the charge level of the battery constant while driving and provides an additional range thanks to a 25% larger fuel tank (2.4 gallons). With the introduction of the BMW i3 (94 Ah), BMW i now also offers a new BMW Home Charger Connect, a residential charging station designed for comfortable and fast home charging featuring additional connected functions. Pricing for the 2017 BMW i3 (94 Ah) will be released closer to market launch.

    Higher storage density of the battery cells.

    The BMW i3 (94 Ah) sets a new benchmark in its segment with 94 ampere hours (Ah) cell capacity, 33 kWh total battery energy, and an electric range of approximately 114 miles combined1 (hwy/city) on one full battery charge. Consuming only 27 kWh/100mi the BMW i3 is the most efficient car in its segment with the lowest electricity consumption costs of approximately 2.81 USD/100mi4.

    The high-voltage battery of the BMW i3 consists of eight modules with twelve storage cells each and its capacity has increased by more than 50% without any changes in exterior dimensions. By optimizing the cell-internal packages with more electrolyte and adapting the active material, BMW and Samsung SDI have succeeded in increasing cell capacity to 94 Ah and overall battery energy to 33 kWh of which 27.2 kWh can be effectively used. The previous battery of the BMW i3 (60 Ah) produced 22 kWh (gross)/19 kWh (net).

    The lithium ion cells used, set themselves apart in the competitive field by achieving a special balance between high energy density, cycle stability and safety in the case of an accident. The high-voltage battery also has an advanced thermal management system that keeps the battery operating in the optimal temperature range, which further enhances performance. For example, the coolant of the air conditioning system is responsible for cooling the high-voltage battery very effectively, while a heating system can also be used to warm the battery to ensure the optimal operating temperature before starting off. Customers receive an 8-year/100,000-mile High-voltage Battery Warranty.

    The BMW i3 – a benchmark in terms of sustainability

    During the development phase of the BMW i3, the entire architecture of the electric drivetrain was designed with the next technological steps as well as serviceability in mind. For example, if necessary a single battery module can be exchanged which distinguishes the BMW i3 from other competitive offers and represents an integral component of the holistic BMW i concept of sustainability. From the production stand point, sustainability is achieved to a large extent through the CO2 free electricity supply of the BMW i production sites in Leipzig (assembly) and Moses Lake (CFRP production) as well as through the use of 70 percent less water in the production process compared to conventional automobiles.

    Optimized performance delivery, more efficient drive.

    The BMW i3 is by far the lightest car in its segment. Despite the slight weight increase, at 2,961 lbs (BEV), and 3,234 lbs (REX), the BMW i3 (94 Ah) is characterized by driving performance, which is subjectively as agile as the 60 Ah model variant. The BMW i3 (94 Ah) is also powered by the same 3 phase AC synchronous electric motor developed in-house by the BMW Group. The motor generates an output of 170 hp and delivers 184 lb-ft of torque which is available as soon as the electric motor begins to turn. The BMW i3 (94 Ah) accelerates from 0 to 60 mph in just over 7 seconds. The impressive electric motor, small turning circle of 32.3 feet, – a major benefit to driving in the city – BMW’s near-perfect 50- 50 weight distribution, precise electric power steering and the stable suspension set-up help to make the i3 as satisfying to drive as every other BMW.

    The sporty character of the BMW i3’s electric motor is also clearly noticeable by its performance figure of 5.1 seconds accelerating from 50 to 75 mph. This is a decisive factor for enabling fast and safe passing maneuvers, and is normally only achieved by combustion engine powered cars with considerably higher outputs. The BMW i3 (94 Ah) is close to the level of cars such as the (320 hp) BMW 340i. Power is transmitted to the rear wheels via the single-speed transmission, which the BMW i3 uses to accelerate without torque interruption to its electronically limited top speed of 93 mph.

    The electric consumption of the BMW i3 (94 Ah) has also been reduced by a large number of detail improvements including revised electric motor management as well as advanced low-resistance tires with optimized compound.

    Charging times.

    The 7.4 kW charging electronics of the BMW i3 (94 Ah) can charge the 33 kWh battery in approximately 4.5 hours using a Level 2 charger, which is slightly more than the approximately 3.5 hours required to charge the battery on a BMW i3 (60 Ah). Standard equipment of the BMW i3 includes the occasional use cable for connecting it to a domestic power socket. Core elements such as range, hallmark BMW agility thanks to low weight and overnight battery charging remain in place.

    The BMW i3 is equipped with the future-proof 50 kW direct current (DC) fast charging technology. When the BMW i3 (94 Ah) is connected to a DC fast charging station, the battery cells are charged up to a minimum of 80 percent of their capacity in less than 40 minutes. In the BMW i3 (60 Ah) this takes around 25 minutes. This means that the BMW i3 (94 Ah) achieves a charging speed of 2.5 mi/min which corresponds to 24 minutes charging time per 62 miles of range.

    Range Extender for even greater range.

    BMW i also offers a Range Extender for the BMW i3 (94 Ah).The range of the BMW i3 is extended by a 650 cc 2-cylinder gasoline engine which is located adjacent to the electric drive above the rear axle. The Range Extender engine delivers a maximum output of 38 hp and powers a generator in order to produce electricity, working on a required-based and highly efficient principle. For those occasional times where additional range is required, as soon as the charging level of the lithium ion batteries drops to a specified level, the Range Extender kicks in to keep the charging level constant effectively extending the range. Fitting the car with the Range Extender has no influence on the available luggage volume: the luggage compartment volume remains unchanged at 15.1 ft3 and can be extended to 36.9 ft3 with the rear seats folded down. The BMW i3 (94 Ah) now features a 2.4 gallon fuel tank improving the range from the previous model.

    The BMW i3 (94 Ah) with Range Extender weighs approximately an extra 270 lb compared to the Battery Electric BMW i3 but is also characterized by a high level of agility and offers impressive performance figures. It accelerates from zero to 60 mph in just 8 seconds.

    New equipment on the BMW i3.

    The BMW i3 (94 Ah) is now available in the exclusive Protonic Blue metallic exterior color, previously only available in the US on the BMW i8. The BMW i3 (94 Ah) customer can also choose from two non-metallic paint colors (Capparis White and Fluid Black) and, in addition to Protonic Blue, three metallic paintwork colors (Mineral Grey, Platinum Silver and Ionic Silver).

    The Deka World is now part of the standard profile of the BMW i3 (94 Ah) and features a lightweight dark cloth fabric interior made from recycled materials. Other changes to the standard profile include the addition of the Universal Garage Door Opener, Advanced Real- Time Traffic Information, and Comfort Access. As part of the Tera World, a Dark Oak Wood trim is also now included, with an alternative Light Eucalyptus Wood trim available as well. These trims are also available for ordering with the Giga World.

    The highly anticipated electric moonroof is also available for ordering for the first time in the US. This option features individual shades and adds to the great set of convenience features that the BMW i3 has to offer.

    Standard profile and equipment for the BMW i3 (94 Ah) includes: Automatic climate control, Dynamic Cruise Control, LED Headlights, HD Radio, DC Fast Charging, Navigation Business System, BMW Assist and BMW Teleservices. Other standard features include: the iDrive operation system, the BMW i RemoteApp functionalities, the Driving Dynamic Control switch, hands-free telephone operation, leather steering wheel and Park Distance Control (PDC).

    BMW i3 – a success story.

    The BMW Group took on a pioneering role when it founded the BMW i brand and decided to develop an independent vehicle structure and passenger cells made of carbon fiber reinforced plastic (CFRP) as well as BMW eDrive technology for a purely electric drive. The BMW i3, which was designed for local emissions-free urban mobility, as well as the trail- blazing BMW i8 Plug-in-Hybrid sports car combined with sustainability-oriented premium character. Since the November 2013 launch, the BMW i3 has already established itself at the top of its segment. The most important single market for the purely electric five door BMW i3 is the U.S. More than 80 percent of buyers deciding on a BMW i3 worldwide are new customers for the BMW Group. The BMW i3 and the BMW i8 received a large number of awards for innovations in the areas of lightweight construction, drive, sustainability, driving performance and design. This makes BMW i the brand to win the most awards in the world during its market launch phase.

    Comfortable home charging: the new BMW Home Charger Connect. In late 2016, BMW i will be offering the new BMW Home Charger Connect, a residential charging station designed for comfortable and fast home charging. The new BMW Home Charger Connect, with a more compact, sleeker design, charges the battery of the BMW i3 (94 Ah) in approximately four hours and 30 minutes. The charging process starts automatically as soon as the car and charging cable are connected. The BMW Home Charger Connect is operated using an LED interface.

    The BMW Home Charger Connect comes standard with WiFi and will feature innovative charging services which can be accessed remotely. This charger helps preserve vehicle range as it can precondition the vehicle battery when connected.

    On the go: convenient public charging with ChargeNow.

    ChargeNow is designed to optimize the public charging experience for BMW i customers, for easy access to public charging options. Thanks to ChargeNow’s partnerships with leading public EV charging network providers, BMW i drivers enjoy convenient access to public chargers along the way. Learn more at www.chargenowusa.com.

    ChargeNow DC Fast5: Eligible BMW i3 drivers can recharge for no charge.

    Offered by BMW in cooperation with EVgo, ChargeNow DC Fast allows eligible BMW i3 drivers in participating markets to enjoy 24 months of no cost charging sessions for the BMW i3 at participating EVgo Stations. Enrolled BMW i3 customers can use the ChargeNow card for unlimited 30 minute, DC Fast Combo charging sessions and Unlimited 1 hour, Level 2 charging sessions.

    The BMW i3 is equipped with the future-proof 50 kW direct current (DC) Fast charging technology. When the BMW i3 (94 Ah) is connected to a DC Fast charging station, the battery cells are charged up to 80 percent of their capacity in less than 40 minutes. In the BMW i3 (60 Ah) this takes approximately 25 minutes.

    ConnectedDrive: Setting standards through Connectivity.

    The optional Navigation System Professional provides BMW ConnectedDrive Services especially developed for BMW i. The range assistant follows the planned and currently driven route. If the destination selected in the navigation system is beyond the car’s range, the driver receives the suggestion to shift to the ECO PRO or ECO PRO+ mode. Additionally, the system calculates a more efficient alternative route. Should it be necessary to recharge at a public charging station, the driver is shown all the available stations along the planned route.

    A dynamic range map is another central element of the connected navigation unit. Apart from the current charging status of the battery, the driving style, the activated electric comfort functions and the selected driving mode, the topographic features, the current traffic situation and the outside temperature are all taken into consideration. The Advanced Real Time Traffic Information (ARTTI) data is used for this purpose. The data is provided by the BMW ConnectedDrive Server.

    The BMW i3 also sets standards when it comes to connecting driver and car. The BMW i Remote App provides useful vehicle-related mobility planning data available on the customer’s smartphone. Apart from pedestrian navigation; navigating your way to your destination from the parking space and back, BMW ConnectedDrive offers a so-called intermodal routing system and for the first time in combination with the Navigation System Professional. This also incorporates public transport connections such as subway stops if this means you can reach your destination quicker. From the actual trip in the BMW i3, looking for a parking space, changing onto a metro and or a walking route, the BMW i ConnectedDrive services take the customer to his destination efficiently.

    Daimler invest €500M in Hamburg plant for e-mobility components

    Daimler is comprehensively modernizing the Mercedes-Benz Hamburg plant and is expanding its product portfolio to include key components for electric driving. This is part of the transformation plan that the company has agreed on with the works council. With the agreement in Hamburg, Mercedes-Benz Cars has now successfully set out the transformation plans for all plants in Germany.

    “The completion of the transformation plans is an important milestone in our growth strategy. We put our vehicle and powertrain plants on a future-oriented and sustainable foundation and strengthen their international competitiveness. Thus, we increase the flexibility and efficiency in our global production network. For that purpose we are investing several billion euros”, said Markus Schäfer, Member of the Divisional Board Mercedes-Benz Cars, Production and Supply Chain Management.

    The transformation plan ensures the competitiveness of the site and keeps employment stable. In addition, the agreement provides for a highly flexible production through modern shift models.

    “With the investment of 500 million euros, we will develop the Hamburg plant into a high-tech site producing drive components for electric mobility. This is a proof for the high qualification and outstanding performance of our employees. The transformation plan is a future-oriented achievement for the plant that offers employees new opportunities”, says Wolfgang Lenz, Site Manager Mercedes-Benz plant Hamburg. Company and works council have agreed on an increase in training places, resulting in 26 positions each year for the years 2017 and 2018. Furthermore, ten new permanent jobs will be created and filled this year.

    “For the employees, the now agreed transformation plan is a clear, positive signal: The plant takes part in the company’s growth strategy and profits from future prospects of the industry. Our central goal in the negotiations was the assurance of future products for the site. The increase in the number of training places and permanent positions indicate that the company continues to count on the plant in Hamburg”, says Jörg Thiemer, Chairman of the Works Council Mercedes-Benz plant Hamburg.

    The production of axles and axle components, lightweight structural components and steering columns, along with exhaust technology, will remain an integral part of the plant. The agreement provides the Mercedes-Benz plant Hamburg with extra capacity for axles and axle components. The third generation of steering columns will also be produced in Hamburg. This means that every Mercedes-Benz vehicle will continue to include a part from Hamburg. With the production of the cockpit crossmember for the C- and E-Class, lightweight structural components will continue to be produced here.

    The innovative components, manufactured using environmentally responsible production technologies, make a significant contribution to reducing vehicles’ CO2 emissions.

    “With the transformation plan for the Hamburg plant we are continuing the successful strategic realignment of our German powertrain plants. We have defined a sustainable product portfolio and measures to increase efficiency and flexibility for all plants, leaving us extremely well prepared to face the future”, says Frank Deiß, Head of Production Powertrain Mercedes-Benz Cars and Site Manager Mercedes-Benz plant Untertürkheim.

    Daimler recently announced a 500 million Euros investment in a new battery factory in Germany. The new battery factory will produce lithium-ion battery packs for hybrid and electric vehicles for Mercedes-Benz and smart brands.

    Daimler has also said it is open to the idea of creating an alliance between Germany's premium carmakers to manufacture next-generation batteries.

    Ford CEO confirms plans for long-range electric car

    Ford CEO Mark Fields said the Dearborn automaker will not be left behind in the race to develop long-range electric vehicles like the Tesla Model 3 and Chevrolet Bolt that can go 320 km (200 miles) or more on a single charge.

    “We want to make sure that we’re either among the leaders or in a leadership position,” Fields said during a conference call Thursday with analysts. “When you look at some of the competitors and what they’ve announced, clearly, that’s something we’re developing for.”

    The Chevrolet Bolt will have a range of at least 320 km and a starting price of about $27,000 when it goes on sale later this year.

    Tesla CEO Elon Musk generated global buzz when he unveiled the Tesla Model 3 earlier this month. That car is expected to have 345 km (215 miles) of range and will go on sale in late 2017 at a starting price of $35,000.

    Earlier this month, Automotive News reported that the automaker was satisfied with its 2017 Focus Electric that will get 160 km (100 miles) on a full charge, saying that vehicle will satisfy a large chunk of consumers.

    Fields didn’t say when Ford plans to launch a vehicle to match Tesla's Model 3 or the Chevrolet Bolt, but made it clear Ford is pressing forward.

    He did reiterate Ford's plans to spend $4.5 billion over the next four years to develop 13 new hybrid or electric vehicles.

    "Our approach, very simply, is to make sure we are among the leaders or in a leadership position in the product segments that we are in," Fields said.

    Ford Motor Company are collaborating with Xerox PARC and Oak Ridge National Laboratory to develop pouch cells with a 20% improvement in gravimetric energy density (Wh/kg), and a 30% reduction in $/kWh costs for electric vehciles.

    DARPA is developing smarter, faster armored ground vehicles

    Today’s ground-based armored fighting vehicles are better protected than ever, but face a constantly evolving threat: weapons increasingly effective at piercing armor. While adding more armor has provided incremental increases in protection, it has also hobbled vehicle speed and mobility and ballooned development and deployment costs. To help reverse this trend, DARPA’s Ground X-Vehicle Technology (GXV-T) program recently awarded contracts to eight organizations.

    DARPA's Ground X-Vehicle Technology (GXV-T) program seeks to develop groundbreaking technologies that would make future armored fighting vehicles significantly more mobile, effective, safe and affordable.

    Radically Enhanced Mobility—Ability to traverse diverse off-road terrain, including slopes and various elevations. Capabilities of interest include revolutionary wheel/track and suspension technologies that would enable greater terrain access and faster travel both on- and off-road compared to existing ground vehicles.

    Like previous autonomous off-road military vehicle prototypes, for example Carnegie Mellon University's "Crusher", (pictured below) all-wheel-drive in-wheel motor electric powertrains are a key enabling technology for these next generation vehicles.

    “We’re exploring a variety of potentially groundbreaking technologies, all of which are designed to improve vehicle mobility, vehicle survivability and crew safety and performance without piling on armor,” said Maj. Christopher Orlowski, DARPA program manager. “DARPA’s performers for GXV-T are helping defy the ‘more armor equals better protection’ axiom that has constrained armored ground vehicle design for the past 100 years, and are paving the way toward innovative, disruptive vehicles for the 21st Century and beyond.”

    Volvo targets one million electrified cars by 2025

    Volvo has set itself a target of producing one million electrified cars by 2025, in a bid to serve the growing demand for battery-powered vehicles.

    The Swedish car maker is aiming to produce two hybrid versions of every model in its range, with the first all-electric car expected to appear in 2019.

    “It is a deliberately ambitions target,” said Volvo boss Håkan Samuelsson. “It’s going to be a challenge, but Volvo wants to be at the forefront of this shift to electrification”.

    Volvo says it has been preparing for the move to electric vehicles for five years by developing two platforms, both of which can incorporate hybrid and electric technology, with one for large cars and one for small cars.

    The Scalable Product Architecture (SPA) platform will be used for its 90 and 60 series models, with the soon to be launched 40 series using the Compact Modular Architecture (CMA). All of its models will be available with as electrified versions.

    Last year, Volvo announced that it would launch an all-electric rival to Tesla, with a range of 325 miles, by 2019. Volvo says the years between 2020 and 2025 are a “period of critical acceptance” for the electric vehicle, as it aims to make electric cars part of the mainstream market.

    LeEco Unveils LeSEE Autonomous Electric Vehicle Concept [VIDEO]

    China's Le Holdings Co Ltd, also known as LeEco and formerly as LeTV, on Wednesday unveiled an all-electric battery concept car whose production version the company hopes will compete head-on with Tesla Model S.

    The concept car, called LeSEE, which hints at a production version of the car LeEco is widely expected to launch in the future, is one of an array of similarly positioned premium electric vehicles (EVs) due to hit the market in the next few years from more than half a dozen Chinese-funded EV start-ups.

    LeEco said the concept car, which will be displayed at next week's Beijing auto show, is not only fully electrically propelled but has been engineered to be a "smart", "connected" and "automated self-driving" car.

    Jia Yueting, co-founder and head of LeEco, said he hopes that when the car hits the market it will help China's auto industry reach the forefront of the global auto sector.

    "When everyone is questioning us over our ability to develop a car like this and is laughing at us, we are still able to be here and show you this car ... I am so emotional," Jia said at a LeEco launch event for several products in Beijing on Wednesday.

    Jia said LeEco is also developing a car-sharing business in connection with its green car efforts.

    He said one day LeEco cars would be offered free of charge to consumers because the company aims to make money on content and other services it sells through those connected cars. Jia did not say when that day might come.

    "Our cars' pricing model will be similar to pricing models for cellphones and tv sets we sell today," he said. "One day our cars will be free ... We are getting there some day."

    LeEco's electric vehicle unit and other EV startups in China proliferated after the government, looking to fuel a more determined switch to electricity as the ultimate alternative to petrol, liberalized and opened its automotive industry to allow deep-pocketed tech firms to invest as long as they dabble in electric cars.

    Aside from LeEco, the likes of Baidu, Alibaba, Xiaomi Inc, Tencent and other tech firms have funded more than half a dozen EV start-ups, which include NextEV and CH-Auto.

    Those new players have been emboldened by the government's all-out support for all types of electric cars, which includes generous incentives to buyers.

    They also expect industry policymakers to mandate providers of public transportation such as bus companies, taxi operators and even courier services to purchase electric vehicles and invest in charging infrastructure to usher in an electric future.

    VW Push for All-Electric Rallycross Supercars

    Volkswagen is considering the development of an all-electric rallycross supercar.

    The German firm's head of technology Frank Welsch says the short, sharp format of rallycross events offers the perfect showcase for advances in electric car technology.

    “I can certainly imagine a championship done with all-electric cars,” Welsch told Autocar. “The races are around six minutes long, which allows for short, intense bursts of competition and then charging.”

    VW already competes in Red Bull Global Rallycross with factory Beetle GRCs and in FIA World Rallycross with Polo RXs. Both cars squeeze around 560 HP out of their tiny engines and reach 100km/h in just 2 seconds.

    “Today these cars are super-powerful, have torque from hell and use all-wheel drive,” said Welsch. “Electric drivetrains could deliver that.”

    Welsch went on to say that “If the championship moved that way it would be perfect for us.”